
C++ Notes Class XI Data Types, Console Input and Output

Introduction

C++, in Computer Science, an object-oriented version of the C programming language,

developed by Bjarne Stroustrup in the early 1980s at Bell Laboratories and adopted by a number

of vendors, including Apple Computer, Sun Microsystems, Borland International, and Microsoft

Corporation.

Data Types

In C++ there are five (5) Fundamental (Built-in or Primitive or Basic) data types:

1. void represents no type (type less) and usually used as a return value of a function.

Data type void is the odd one out since we cannot define a variable of the type

void.

2. char represents any single character from keyboard. Every computer has a character

set. A PC has ASCII character set. ASCII character set has 256 characters. Data

type char represent any character from ASCII character set.

3. int represents zero, positive and negative integer values (whole numbers).

4. float represents zero, positive and negative floating point values (real numbers).

5. double represents zero, positive and negative floating point values (real numbers). Data

type double is similar to float but with better precision.

String: represents sequence characters enclosed within a pair of double quotes ("). String

is not a fundamental type. String is a derived data type. Derived data types will

be discussed in details later.

Constants
A value which is hard coded into a program, which remains unchanged through out the program.

Constants are of five (5) types:

1. char constant: Character constant

2. int constant: Integer constant

3. float constant: Single precision floating point constant

4. double constant Double precision floating point constant

5. String constant

Note: C++ does not support constant of the type void.

Examples of C++ Constants are given below:

Data Type Constants

char
'A','B','C',…,'X','Y','Z','a','b','c',…,'x','y','z'

'0','1',…,'8','9','!','@','#','%','^','&','*','+',…,'?'

int
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, …, 2147483647

0, -1, -2, -3, -4, -5, -6, -7, -8, -9, …, -2147483648

float

double

0.0, 15.75, 96.625, 1.25, 28.575, 2.3333, 0.69, 10.0

-25.8, -0.72, -154.85, -5.0, -759.625, -89.025, -7.2

string
"Amit", "Pizza", "India", "Apple", "G", "9", "$", "e"

"GH-14/12", "23981535", "20/10/2005", "***", "6.0"

Variables

A variable is name given to a memory location to store value in the computer’s main storage. It

is a name used in the program that represents data (value). The value assigned to the variable

name may change (vary) as the program is executed. The program can always access the current

value of the variable by referring to its name. In C++ variables are to be created before they can

be used. To create a variable we need to give a name to a variable.

C++ Notes Class XI Data Types, Console Input and Output

Rules for naming a C++ variable (identifier)

1. Variable name should start with an alphabet (letter) or an underscore.

2. Variable name may contain more than one character. Second characters onwards we may use

only alphabets or digit or underscore.

3. No special characters are allowed in a variable name except underscore.

4. A variable name in C++ is case sensitive. Uppercase and lowercase letters are distinct.

Sum, sum, SUM and sUm are treated as four different variable names in C++.

5. A variable name cannot be a keyword.

void, char, int, float, double, if and else are incorrect variable names

because they are keywords.

6. In Borland C++ only first 55 characters in a variable name are significant.

Examples of correct variable names are given below:
marks, m1, m2, Father_Name, Max_Score, sub1code, ans, Roll,

INT, Char, _Val, _Input_Screen, CompScMarks

Generally a C++ variable name does not start with an underscore (_). List of incorrect

variable names are given below:

In correct Variable Name Reasons

1m, 2ndst, #No, %Att Variable name starts with either digit or special character

Stu-name, name$, marks

1, val%, GH-8/64
Variable names contain special characters

Creating variable

A variable is a name given to a memory location to store a value and it represents a value in a

program. The value assigned to the variable name may change during execution of program.

The program can always access the current value of the variable by referring to its name.

Rule: DataType VariableName;
DataType VariableName1, VariableName2, VariableName3, … ;

Usage
char sex;

char ans, choice, section;

char name[30];

char subject[20], country[25];

int roll;

int flatno, number, cellno, phone;

float average;

float area, length, marks;

double temperature;

double radius, price, rate;

Creating a variable is a statement in

C++ and every C++ statement is

terminated by a semi-colon (;).

String is not a fundamental data type

but still examples are given how to

create string variables. An array of

character is used to create a string

variable. An example is given

below:
char name[30];

More detailed discussion about array

and strings will be done later.

C++ Notes Class XI Data Types, Console Input and Output

Memory Allocation

Every variable in C++ is allocated fixed amount of memory. C++ data types, memory allocation

and range of values are given below:

Date Type Storage (Memory Allocation) Range of values

1. char 1 byte or 8 bits -128 to 127

2. int 4 bytes or 32 bits -2147483648 to 2147483647

3. float 4 bytes or 32 bits 3.410-38 to 3.41038

4. double 8 bytes or 64 bits 1.710-308 to 1.710308

Assignment Operator

Value is assigned to a variable by using assignment operator. Using assignment operator, value is

stored in a variable when writing a program. Using assignment operator, value is copied to a

variable.

Rule: VariableName = Value;
DataType VariableName = Value;

Usage of assignment operator
char ch;

int roll;

double rate;

ch='A';

sum=13;

rate=154.25;

Usage of assignment operator
char ch='A';

int roll=13;

double rate=154.25;

Console Output (cout)

Using cout and output operator (<<) value can be displayed on the screen (console). A list of

data items can be displayed with single cout, each data separated by output operator (<<).

Rule: cout<<Value;

cout<<Value1<<Value1<<Value3…;

cout<<Value<<endl;

Usage of cout

cout<<"Vinay Ahuja";

cout<<11;

cout<<'A';

cout<<78.5;

Produces output like
Vinay Ahuja11A78.5

Usage of cout
cout<<"Vinay Ahuja"<<11<<'A'<<78.5;

Without endl, next output

is displayed immediately

after previous output. As a

result all four (4) data items

are displayed next to each

other without any space.

C++ Notes Class XI Data Types, Console Input and Output

Produces output like
Vinay11A78.5

Usage of cout

cout<<"Vinay Ahuja"<<endl;

cout<<11<<endl;

cout<<'A'<<endl;

cout<<78.5<<endl;

Produces output like
Vinay Ahuja

11

A

78.5

Usage of cout
char name[20]="Vinay Ahuja";

int cla=11;

char sec='A';

double marks=78.5;

cout<<"Name ="<<name<<endl;

cout<<"Class ="<<cla<<endl;

cout<<"Section="<<sec<<endl;

cout<<"Marks ="<<marks<<endl;

Produces output like
Name =Vinay Ahuja

Class =11

Section=A

Marks =78.5

Displaying many values by using single cout and separating the values by output operator (<<)

is known as cascading of output operator. An example is given below:

cout<<"Vinay Ahuja"<<11<<'A'<<78.5<<endl;

Console Input (cin)

Using cin, value can be inputted in a variable when a program is getting executed (running).

cin causes a program to stop and wait for user to input value through a keyboard (console). It

will then store the value inputted in a variable. A variable is to be created (defined) and then

value can be inputted by using cin. List of value can be inputted using cin, separating the

variable names by input operator (>>).

Rule: cin>>VariableName;

cin>>VariableName1>>VariableName2>>VariableNname3 …;

Usage of cin
char name[20], sec;

int cla;

double marks;

With endl, next output is

displayed in the beginning

of the next line. As a result

all four(4) data items are

displayed on four separate

lines.

C++ Notes Class XI Data Types, Console Input and Output

cin>>name;

cin>>cla;

cin>>sec;

cin>>marks;

Produces a screen like
Vinay◄⌢⌧

11◄⌢⌧

A◄⌢⌧

78.5◄⌢⌧

After every input Enter key (◄⌢⌧) is pressed. When inputting a string (Vinay) double

quotes (") are not required. When inputting a character (A) single quote quotes (') are to be

avoided.

Usage of cin
char name[20];

int cla;

char sec;

double marks;

cin>>name>>cla>>sec>>marks;

Produces a screen like
Vinay□11□A□78.5◄⌢⌧

Every input is separated by Space (□) but final key stroke is Enter (◄⌢⌧).

Or,

Produces a screen like
Vinay⌢⌢►11⌢⌢►A⌢⌢►78.5◄⌢⌧

Every input is separated by Tab (⌢⌢►) but final key stroke is Enter (◄⌢⌧).

Inputting many values by using single cin and separating the variable names by input operator

(>>) is known as cascading of input operator. An example is given below:

char name[20];

int cla;

char sec;

double marks;

cin>>name>>cla>>sec>>marks;

To make an input more user friendly, it is better to display a prompt or a message before an

input so that the user knows exactly what kind of input is required for the program.

Usage of prompt or message with cin
int cla;

char name[20], sec;

double marks;

cout<<"Input Name ? "; cin>>name;

cout<<"Input Class ? "; cin>>cla;

cout<<"Input Section? "; cin>>sec;

cout<<"Input Marks ? "; cin>>marks;

C++ Notes Class XI Data Types, Console Input and Output

After execution of above program segment produces a screen like this

Input Name ? Vinay

Input Class ? 11

Input Section? A

Input Marks ? 78.5

Structure of a C++ program

A complete C++ program consists of header files and at least one function (main() function).

The most important function in C++ is the main() function. A complete C++ program may

contain other functions as well, but they are invoked from the main() function only. An example

is given below:

#include<iostream.h>

#include<conio.h>

void main()

{

cout<<"This is my first program using C++";

getch();

}

Running of the program will produce output screen like
This is my first program using C++

Note: Output remains on the screen till you press any key because getch() function

waits for a user to strike any key.

Header files: The header file iostream.h is required for cout and output operator (<<). To

use the function getch() we need the header file conio.h. C++ compiler will

obtain necessary information about cout, << and getch() from the header files.

Function: A C++ function has two main components – header and block (body).

Function Header – void main()

Function block
{

cout<<"This is my first program using C++";

getch();

}

A block starts with curly bracket ({) and ends with curly bracket (}). Every C++

function contains C++ statements. Every C++ statement is separated by a semi-

colon (;).

Some important keyboard shortcuts:

a) To compile a program press ALT+F9 (Click Project from Menu Bar and then click

Compile). Compiler will convert a program written in high level language (source code –

CPP file) into an intermediate machine language code (Object Code – OBJ file). Compiler

also checks for syntax errors. Object code will be successfully generated provided the Source

Code does not contain any syntax error(s).

b) To make (compile and link) a program press F9 (Click Project from Menu Bar and then

click Make). A linker will add Run-Time Library to the Object Code to obtain Executable

C++ Notes Class XI Data Types, Console Input and Output

Machine Language Code (Executable Code – EXE file). A computer or the CPU (processor)

of the computer can only execute Machine Language Code (EXE file). Run-Time Library is

collection sub-routines needed to run a program.

c) To run (compile, link and execute) a program press CTRL+F9 (Click Debug from Menu

Bar and then click Run). Machine Language Executable file is loaded in the computer’s main

storage from the computer’s secondary storage and the program is executed. When the

program is getting executed, a DOS Window pops up on the Desktop. DOS Window

disappears after the execution of the program.

#include<iostream.h>

#include<conio.h>

void main()

{

char name[20], sec;

int cla;

double marks;

cout<<"Input Name ? "; cin>>name;

cout<<"Input Class ? "; cin>>cla;

cout<<"Input Section? "; cin>>sec;

cout<<"Input Marks ? "; cin>>marks;

cout<<"Name ="<<name<<endl;

cout<<"Class ="<<cla<<endl;

cout<<"Section="<<sec<<endl;

cout<<"Marks ="<<marks<<endl;

getch();

}

Running of the program produce screen like
Input Name ? Vinay◄⌢⌧

Input Class ? 11◄⌢⌧

Input Section? A◄⌢⌧

Input Marks ? 78.5◄⌢⌧

Name =Vinay

Class =11

Section=A

Marks =78.5

Running of the program produce screen like
Input Name ? Vinay Ahuja◄⌢⌧

Input Class ? Input Section? Input Marks ? Name =Vinay

Class =1

Section=

Marks =1.84513e-307

Inputting string with a space creates run-time error. C++ program treats space as separator.

Remaining three inputs are ignored. String "Vinay" get stored in the variable name.

Garbage values get stored in the variable cla, sec and marks.

Arithmetic Operators

C++ supports all the four arithmetic operators like plus (addition +), minus (subtraction -),

multiplication (product *) and division (divide /). In addition to this it supports remainder

C++ Notes Class XI Data Types, Console Input and Output

operator (%). Remainder operator (%) can only be used with integer type (int type). Brackets

or parenthesis () are also supported by C++. Operators *, / and % are given more precedence

compared to operatots + and -. However operators *, / and % are given same precedence.

Similarly operators + and – are given same precedence.

Operator Meaning Usage Result

 Addition
10 20 30

72.75 57.65 130.4

 Subtraction

30 – 15 15

23 – 57 -34

42.5 – 19.25 23.25

176.5 – 225.25 -48.75

 Multiplication
12 18 216

7.5 2.5 18.25

 Division

40 / 5 8

14 / 4 3

4 / 10 0

12.5 / 2.5 5.0

13.5 / 20 0.675

% Remainder

15 % 4 3

4 % 10 4

10 % 2.5 Syntax Error

5 % 0 Run-Time Error

 Parenthesis
(2 + 3) (6 – 3) 15

28 / (16.5 – 9.5) 4

Operator Precedence

 Expressions within parentheses are evaluated first

 % Multiplication, division and remainder are evaluated next

 Addition and subtraction are evaluated last

Numeric Expression

A C++ expression involving Arithmetic Operators is called numeric expression. Any expression

in C++ consists of operators and operands. Examples of C++ numeric expressions are given

below:

Expression Operator Operands

10 + 20 + 10 and 20

25 – 16 – 25 and 16

35 / 4.25 / 35 and 4.25

20 * 1.25 * 20.5 and 1.25

25 % 7 % 25 and 7

35 * 2 * 35 and 2

Pure Expression: An expression where all the operands belong to same data type.

Rule: int operator int = int

float operator float = float

double operator double = double

C++ Notes Class XI Data Types, Console Input and Output

Examples of pure expressions:

Integer Type Floating Point Type

10 + 20 2.5 + 3.8

20 – 5 9.8 – 3.5

17 * 6 11.25 * 2.5

35 / 7 5.7 / 1.9

34 % 5 10.8 / 3.2

Mixed Expression: An expression where the operands belong to different data types.

Rule: int operator char = int

char operator int = int

int operator float = float

float operator int = float

int operator double = double

double operator int = double

Examples of mixed expressions:

32 + 'A' = 97 since ASCII code of 'A' is 65

't' – 32 = 84 since ASCII code of 't' is 116
20.0 / 8 = 2.5

20 + 2.5 = 22.5

#include<iostream.h>

void main()

{

int a, b;

cout<<"Input two integers? "; cin>>a>>b;

int su=a+b, pr=a*b, di=a-b, qu=a/b, re=a%b;

cout<<"Sum ="<<su<<endl;

cout<<"Product ="<<pr<<endl;

cout<<"Difference="<<di<<endl;

cout<<"Quotient ="<<qu<<endl;

cout<<"Remainder ="<<re<<endl;

}

Execution of the program produces output screen
Input two integers? 15 5◄⌢⌧

Sum =20

Product =75

Difference=10

Quotient =3

Remainder =0

Execution of the program produces output screen
Input two integers? 20 6◄⌢⌧

Sum =26

Product =120

Difference=14

Quotient =3

Remainder =2

Value 15 get stored in ‘a’ and

value 5 get stored in ‘b’. Since

‘a’ is perfectly divisible by ‘b’,

therefore quotient is 3 and

remainder is 0.

Value 20 get stored in ‘a’ and

value 6 get stored in ‘b’. Since

‘a’ is not perfectly divisible by

‘b’, therefore quotient is 3

(integer part of the quotient)

and remainder is 2.

C++ Notes Class XI Data Types, Console Input and Output

Execution of the program produces output screen
Input two integers? 10.5 2◄⌢⌧

Sum =4243922

Product =42439120

Difference=-4243902

Quotient =0

Remainder =10

Execution of the program produces output screen
Input two integers? 10 2.5◄⌢⌧

Sum =12

Product =20

Difference=8

Quotient =5

Remainder =0

#include<iostream.h>

void main()

{

double a, b;

cout<<"Input two values? "; cin>>a>>b

double su=a+b;

double pr=a*b;

double di=a-b;

double qu=a/b;

cout<<"Sum ="<<su<<endl;

cout<<"Product ="<<pr<<endl;

cout<<"Difference="<<di<<endl;

cout<<"Quotient ="<<qu<<endl;

}

Execution of the program produces output screen
Input two values? 22.5 2.5◄⌢⌧

Sum =25

Product =56.25

Difference=20

Quotient =9

Execution of the program produces output screen
Input two values? 15 4◄⌢⌧

Sum =19

Product =60

Difference=11

Quotient =3.75

Execution of the program produces output screen
Input two values? 12.3 5◄⌢⌧

Sum =17.3

Product =61.5

Difference=7.3

Quotient =2.46

Value 10 (integer part of

10.5) get stored in ‘a’ and

inputted value 2 is ignored. As

a result ‘b’ stores garbage

value (4243922). Therefore

output is also garbage values.

Value 10 get stored in ‘a’ and

inputted value 2 (integer part of

2.5) get stored in ‘b’. Since

there is no other input after

2.5, floating input for an

integer variable does not create

any problem.

When inputting floating value in a

floating point variable, one can input

floating point value and integer value

as well. But integer input will be

converted into a floating point value

and then it will be stored in the floating

point variable.

 When the program is executed for

the first time, only floating values

are inputted.

 In the second execution only

integer values are inputted.

 In the third execution a floating

point value and an integer value is

inputted.

C++ Notes Class XI Data Types, Console Input and Output

#include<iostream.h>

void main()

{

double a, b, c;

cout<<"Input 3 value? ";

cin>>a>>b>>c;

double res1=a+b*c;

double res2=a+b-c;

double res3=(a+b)/c;

cout<<"Res1="<<res1<<endl;

cout<<"Res2="<<res2<<endl;

cout<<"Res3="<<res3<<endl;

}

ALGEBRAIC EXPRESSION
An expression involving arithmetic operators and arithmetic function is called Algebraic

Expression. Examples of algebraic expression and equivalent C++ expression are given below:

Algebraic Expression C++ Expression

 a + b

 a - b

 a * b

a / b

 pow(a,b)

 pow(a,2) + 2*a*b + pow(b,2)

a*a + 2*a*b + b*b

 sqrt(a), pow(a, 0.5), pow(a, 1.0/2)

 sqrt(pow(a,2) + pow(b,2)), sqrt(a*a + b*b)

pow(pow(a,2) + pow(b,2), 0.5)

 pow(a, 4), a*a*a*a

 pow(a, 4.0/3), pow(a, 4/3.0)

pow(a, 1.33333)

 pow(a, 3.0/4), pow(a, 3/4.0)

pow(a, 0.75)

(a + b) / c

(a + b) / (c – d)

(pow(a,3) + pow(b,3))/(pow(c,2) – pow(d,2))

(a*a*a + b*b*b)/(c*c – d*d)

 4*3.14*rad*rad

4*3.14*pow(rad,2)

 log10(x) + log10(y) logarithm to base 10

log(x) + log(y) logarithm to base e

double res1=a+b*c;

First b*c is evaluated and result is added

to a since * has higher than +.
double res2=a+b-c;

First a+b is evaluated and c subtracted

from the result. + and – have same

precedence; therefore + is operation is

carried out first.
double res3=(a+b)/c;

First a+b is evaluated and the result is

divided by c. + has lesser than / but

parenthesized expression is evaluated first.

ba

ba

b

a

ab

ba

22 2 baba

4a

c

ba

dc

ba

22

33

dc

ba

22 ba

24 rad

log(y)log(x)

3 4a

4 3a

a

C++ Notes Class XI Data Types, Console Input and Output

Typecasting: converting data from one type to another type temporarily, inside the processor

(CPU). Examples of Type casting are given below:

#include<iostream.h>

void main()

{

int m, n;

cout<<"Input 2 integers? ";

cin>>m>>n;

double r1=double(m)/n;

double r2=(double)m/n;

cout<<r1<<','<<r2<<endl;

}

#include<iostream.h>
void main()

{

char ch;

cout<<"Input a character? ";

cin>>ch;

int code=int (ch);

cout<<"ASCII Code="<<code<<endl;

}

Character Data

A standard group of letters, digits, punctuation marks and control characters used by computer

represent character type data. List of characters used by computer depends on character set

supported by computer. Commonly used character set are standard ASCII, extended ASCII,

EBCDIC and Unicode. PC uses extended character.

ASCII character set consists of 128 characters. First 32 characters are used for non-printing

control characters. Next 96 characters represent letters of alphabet, digits and special characters

(consists of punctuation symbols, +, -, *, /, …). Extended ASCII characters set consists of 256

characters, that is 128 characters from ASCII character set plus another 128 characters. These

extended 128 character set contains variable set of characters provided by hardware

manufacturer and software developers and it is not necessarily compatible between different

types of computer.

ASCII code: Every character in ASCII character set (including extended characters) is assigned

unique integer value starting from 0 is called ASCII code. That is first character in the ASCII

characters set is assigned a value zero (0) and last character in the ASCII character set is

assigned a value 255. Characters with ASCII code between 31 and 127 are displayed below:
• 32 ! 33 " 34 # 35 $ 36 % 37 & 38 ' 39 (40) 41
* 42 + 43 , 44 - 45 . 46 / 47 0 48 1 49 2 50 3 51

4 52 5 53 6 54 7 55 8 56 9 57 : 58 ; 59 < 60 = 61

> 62 ? 63 @ 64 A 65 B 66 C 67 D 68 E 69 F 70 G 71

H 72 I 73 J 74 K 75 L 76 M 77 N 78 O 79 P 80 Q 81

R 82 S 83 T 84 U 85 V 86 W 87 X 88 Y 89 Z 90 [91

\ 92] 93 ^ 94 _ 95 ` 96 a 97 b 98 c 99 d 100 e 101

f 102 g 103 h 104 i 105 j 106 k 107 l 108 m 109 n 110 o 111

p 112 q 113 r 114 s 115 t 116 u 117 v 118 w 119 x 120 y 121

z 122 { 123 | 124 } 125 ~ 126 DEL 127

This program displays the ASCII

code of an inputted character.
int code=int (ch);

On the right hand side, variable ch

is temporarily converted to int

inside the CPU. The ASCII code of

ch is stored in the variable code.

In this example the parenthesis is

around the data type.

This program displays the result of integer

m divided by integer n. If m is a multiple

of n then the result will be perfect. But if

m is not divisible by n, then the result will

be the integer part, fractional part will be

lost. By typecasting variable m to

double, will give a floating point output.

C++ Notes Class XI Data Types, Console Input and Output

Extended ASCII character set supported by PC is given below:
Ç 128 ü 129 é 130 â 131 ä 132 à 133 å 134 ç 135 ê 136 ë 137

è 138 ï 139 î 140 ì 141 Ä 142 Å 143 É 144 æ 145 Æ 146 ô 147

ö 148 ò 149 û 150 ù 151 ÿ 152 Ö 153 Ü 154 ¢ 155 £ 156 ¥ 157

₧ 158 ƒ 159 á 160 í 161 ó 162 ú 163 ñ 164 Ñ 165 ª 166 º 167

¿ 168 ⌐ 169 ¬ 170 ½ 171 ¼ 172 ¡ 173 « 174 » 175 ⍏ 176 ⍐ 177

⍑ 178 ⌣ 179 〈 180 ⌾ 181 ⌿ 182 ⌳ 183 ⌲ 184 ⍀ 185 ⌮ 186 ⌴ 187

⌺ 188 ⌹ 189 ⌸ 190 ⌥ 191 ⌦ 192 ⌫ 193 〉 194 ⌨ 195 ⌢ 196 ⌬ 197

⌻ 198 ⌼ 199 ⌷ 200 ⌱ 201 ⍆ 202 ⍃ 203 ⌽ 204 ⌭ 205 ⍉ 206 ⍄ 207

⍅ 208 ⍁ 209 ⍂ 210 ⌶ 211 ⌵ 212 ⌯ 213 ⌰ 214 ⍈ 215 ⍇ 216 ⌧ 217

⌤ 218 ⍌ 219 ⍋ 220 ⍍ 221 ⍎ 222 ⍊ 223 α 224 ß 225 Γ 226 π 227

Σ 228 ζ 229 µ 230 η 231 Φ 232 Θ 233 Ω 234 δ 235 ∞ 236 θ 237

ε 238 ∩ 239 ≡ 240 ± 241 ≥ 242 ≤ 243 ⌠ 244 ⌡ 245 ÷ 246 ≈ 247

° 248 ∙ 249 · 250 √ 251 ⁿ 252 ² 253 ⍒ 254 255

Type Modifier

Type modifiers are used to change default type of the built-in data types. Type modifiers

supported by C++ are long, short, signed and unsigned. Table given below shows the

use of type modifiers with the built-in data types.

Data type Storage Range

unsigned char 1 byte / 8 bits 0 … 255

signed char 1 byte / 8 bits -128 … 127

short int 2 bytes / 16 bits -32768 … 32767

long int 4 bytes / 16 bits -2147483648 … 2147483647

signed int 4 bytes / 32 bits -2147483648 … 2147483647

unsigned int 4 bytes / 32 bits 0 … 4294967295

short signed int 2 bytes / 16 bits -32768 … 32767

short unsigned int 2 bytes / 16 bits 0 … 65535

long signed int 4 bytes / 32 bits -2147483648 … 2147483647

long unsigned int 4 bytes / 32 bits 0 … 4294967295

short 2 bytes / 16 bits -32768 … 32767

long 4 bytes / 32 bits -2147483648 … 2147483647

signed 4 bytes / 32 bits -2147483648 … 2147483647

unsigned 4 bytes / 32 bits 0 … 4294967295

short signed 2 bytes / 16 bits -32768 … 32767

short unsigned 2 bytes / 16 bits 0 … 65535

long signed 4 bytes / 32 bits -2147483648 … 2147483647

long unsigned 4 bytes / 32 bits 0 … 4294967295

long double 10 bytes / 80 bits 3.410
-4932

 … 1.110
4932

 Data type void and float does not support any type modifiers.

 Data type int supports all the four type modifiers.

 Data type char supports signed and unsigned.

 Data type double supports only long.

 Type modifiers are used fundamental data type to create a variable. But if a variable is

created using only type modifier then the default data type for the variable is int.

Block
Anything within a pair of braces ({}) is called a block. A block may contain one or more

statements. A block may not contain any statement, that is, a block may be empty. Block is

compulsory or mandatory for a function.

C++ Notes Class XI Data Types, Console Input and Output

Token
Building block of a program is called a token. It is also called program element. Tokens of a C++

program can be classified as Keyword, Identifier, Constant, Operator, String and Comment.

a) Keyword: It is component of a program which has special meaning for the C++ compiler. In

Borland C++ editor keyword appear in bold face. C++ compiler contains list of all the

keywords. List of keywords vary from to compiler to compiler. A keyword cannot be

redefined. List of commonly used C++ keywords are given below:
break case char class const

continue default delete do double

else enum extern float for

friend goto huge if inline

int long new operator private

protected public register return short

signed sizeof static struct switch

this throw try typedef union

unsigned using virtual void while

Highlighted keywords are listed in Computer Science Syllabus.

b) Identifier: Identifier is a component of a program which is identified by a C++ compiler.

There are two broad categories of identifiers:

Built-in: It is name of built-in functions, constants, variables, classes and structure. To

use built-in identifier we need appropriate header file. Built-in identifier can

be redefined.

User-defined: Name created by the programmer like variable names, user-defined function

names, constant names, class names and structure names. User-defined

identifiers can only be used after they have created or declared.

c) Constant: A constant is a program element whose value remains same through the program.

Examples of different types of constants are given below:

Data Type Constants

char 'A', 'B', 't', 'x', '0' , '6', '9', '', '+', '['

int 4, 10, 169, 1234, 0, -71238, -1025, -45, 331, -5

double 0.0, -2.3333, 15.75, -154.85, 96.625, 1.25, -7.8

d) Operator: Operators are used in C++ to carry out various functions. Mostly operators are

used in arithmetic calculations and in logical expressions. But operators may be used for

dynamic memory management. An operator in C++ can be unary, binary and ternary.

Examples of operators are given below:

Operator Expression Meaning

unary + + a Sign of value stored in a remains unaltered

unary - - a Change sign of value stored in a

Binary + a + b Adds a and b

Binary - a – b Subtract b from a

* a * b Multiply a and b

/ a / b Divide a by b

% a % b Remainder of a divided by b

= a = 10 a is assigned a value 10

++ ++a, a++ Increments value stored in a by 1

C++ Notes Class XI Data Types, Console Input and Output

-- --a, a-- Decrements value stored in a by 1

+= a += b b is added to a and the result is assigned a

-= a -= b b is subtracted from a and the result is assigned a

*= a *= b a is multiplied by b and the result is assigned a

/= a /= b a is divided by b and the result is assigned a

%= a %= b a is assigned a value of a % b

== a == b a is equal to b

!= a != b a is not equal to b

> a > b a is greater than b

>= a >= b a is greater than equal to b

< a < b a is less than b

<= a <= b a is less than equal to b

! !(a < b) Negate the condition a is less than b

&& a>=10 && a<=20 a’s value lies between 10 and 20.

|| a<10 || a>20 a’s value is either less than 10 or greater than 20

Unary operator: An operator that needs one operand.

Examples: Unary -, unary +, ++, -- and !.

Binary operator: An operator that needs two operands.

Example: Binary +, Binary -, *, /, %, C++ short hand operators,

logical operators, && and ||.

Ternary operator: An operator that needs three operands. Ternary operator is also

known as Conditional operator. Relational operators (>, >=, <, <=,

==, !=), Logical operators (!, &&, ||) and Ternary operator (?:) will

be discussed with if-else statement.

d) String: In C++ anything enclosed within a pair of double quotes (") is a called a String

constant. A string is treated as an array of character or as a pointer to a character. Array and

pointer will be discussed later. Examples of string are given below:
"India", "35/8", "999", "***", "GH-14/200", "6", "A", "#", ""

f) Comment: Non executable statements of a C++ program are called Comments. Comments

are also known as Remarks. A Comment is completely ignored by a compiler. No code is

generated for a Comment. Comment is a good tool for Debugging. C++ supports two types

of Comments:

Single line Comment: also known as C++ style Comments. Single Line Comment starts

with pair of forward slash (//) and till the end of line is considered

as a Comment. Examples of Single Line Comment are given

below:
// single line comment

// comment in C++ style

Multi-line comment: also known as C style comments. Multi-line comment start with

forward slash and star (/*) and with star and forward slash (*/).

Examples of Multi-Line Comment are given below:
/*

multi-line comments

comment in C style

*/

/* Single line comment */

C++ Notes Class XI Data Types, Console Input and Output

Compiler directive: instruction given to the compiler. Compiler directive is also called Pre-

processor. C++ statement is an instruction given to CPU or to the computer. It is called Pre-

Processor because instruction to the compiler given before the processing starts. Every Compiler

Directive begins with hash (#). Examples of Compiler Directives are given below:

#include: to include header files

#define: to create C++ macros

C++ Shorthand: C++ allows an expression to be written in a compact form. C++ shorthand

works with character (char) type data, integer (int) type data and floating point (float and

double) type data. Examples of C++ shorthand are given below:

Operator Expression Expansion Meaning

+= a += b a = a + b Variable a is assigned a value a + b

-= a -= b a = a - b Variable a is assigned a value a – b

*= a *= b a = a * b Variable a is assigned a value a * b

/= a /= b a = a / b Variable a is assigned a value a / b

%= a %= b a = a % b Variable a is assigned a value a % b

#include<iostream.h>

void main()

{

int a=5, b=7;

b+=a;

a*=b;

cout<<a<<','<<b<<endl;

a/=b;

b-=a;

cout<<a<<','<<b<<endl;

}

Execution of the program produces output screen
60,12

5,7

Increment Operator: Increment operator (++) increments value stored in a variable by 1 (One).

Increment operator works with character (char) type data, integer (int) type data and floating

point (float and double) type data. Examples of Increment operators are given below:

int a=10;

++a;

cout<<"Value in a="<<a<<endl;

a++;

cout<<"Value in a="<<a<<endl;

Produces output like
Value in a=11

Value in a=12

Let us assume that an integer variable x contains a value 6. The table given below displays

the difference between pre-increment operator and post-increment operator.

++a is Pre-increment

Increments value of a by 1, a’s value is 11

a++ is Post-increment

Increments value of a by 1, a’s value is 12

C++ Notes Class XI Data Types, Console Input and Output

Operator C++ Statement Output Explanation

++
cout<<++x<<endl;

cout<<x<<endl;

7

7

Increments x and then displays x

Displays incremented values stored in x

++
cout<<x++<<endl;

cout<<x<<endl;

6

7

Displays x and then increments x

Displays incremented values stored in x

Decrement Operator: Decrement operator (--) decrements value stored in a variable by 1

(One). Decrement operator works with character (char) type data, integer (int) type data and

floating point (float and double) type data. Examples of Decrement operators are given

below:

int a=7;

--a;

cout<<"Value in a="<<a<<endl;

a--;

cout<<"Value in a="<<a<<endl;

Produces output like
Value in a=6

Value in a=5

Let us assume that an integer variable z contains a value 26. The table given below displays

the difference between pre-decrement operator and post-decrement operator.

Operator C++ Statement Output Explanation

--
cout<<--z<<endl;

cout<<z<<endl;

25

25

Decrements z and then displays z

Displays decremented values stored in z

--
cout<<z--<<endl;

cout<<z<<endl;

26

25

Displays z and then decrements z

Displays decremented values stored in z

String: as mentioned earlier string is not a fundamental data type. String is an array of characters

(derived data type). To create a string variable we need to do the following:

Rule: char strvar[size];

Usage
char name[20];

char address[80];

strvar is the name of the string variable and size is a positive integer constant representing

maximum number of characters that can be stored under strvar name. If the string size is 20,

then actually we can store maximum 19 characters and one place for the nul character. We can

use cin to input a string value into a string variable. An example is given below:

#include<iostream.h>

void main()

{

char city[20];

cout<<"City Name? "; cin>>city;

cout<<"City="<<city;

}

--a is Pre-decrement

Decrements value of a by 1, a’s value is 6

a-- is Post-deccrement

Decrements value of a by 1, a’s value is 5

C++ Notes Class XI Data Types, Console Input and Output

First run of program produces following screen:
City? Kolkata

City=Kolkata

Second run of program produces following screen:
City? New Delhi

City=New

Modified program with gets() is given below:

#include<iostream.h>

#include<stdio.h>

void main()

{

}

First run of program produces following screen:
City? Kolkata

City=Kolkata

Second run of program produces following screen:
City? New Delhi

City=New Delhi

Syntax error: error committed when the syntax of the language (grammar of the language) is

violated. Examples of Syntax errors are given below:

a) Typographical mistakes

b) Omitted semicolons or coma

c) References to undeclared variables

d) Wrong number or type of parameters passed to a function

Syntax errors are detected by the compiler. Syntax errors are also known as Compile-Time

errors because the errors are flagged by the compiler during compilation time.

Run-time error: Syntactically correct statement performs illegal operation during execution of a

program is called Run-Time errors. Illegal operation is performed when the program encounters

unexpected data. Run-Time errors are triggered when running the program. Examples of Run-

Time errors are given below:

a) Division by zero (0)

b) Square root of a negative number

c) Logarithm of zero (0) or negative number

Logical error: An error in program design or program implementation that does not prevent

your program from compiling, but causes it to do something unexpected. Examples of Logical

errors are given below:

a) Variables with incorrect or unexpected values

b) Accumulator or counter not initialised

c) Incorrect placement of braces (curly brackets) for a block

d) Missing parenthesis when parenthesis are required

Using cin we cannot input a string

that contains space/tab. To input a

string with space, we have to use

function gets() from the header file

<stdio.h>.

char city[20];

cout<<"City Name? "; gets(city);
 cout<<"City="<<city;

C++ Notes Class XI Data Types, Console Input and Output

The following table lists the precedence and associativity of C++ operators. Operators are listed

top to bottom, in descending precedence. Operators with the highest precedence appear at the top

of the table, those with the lowest appear at the bottom. Within an expression, higher precedence

operators will be evaluated first.

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)* & sizeof Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<= &= ^= |= Right to left

Comma , Left to right

C++ Notes Class XI Data Types, Console Input and Output

1. Write a complete C++ program to input temperature in Celsius and convert it into Fahrenheit.

Display temperature in Fahrenheit on the screen.

#include<iostream.h>

void main()

{

double tcel;

cout<<"Temperature in Celsius? "; cin>>tcel;

double tfar=1.8*tcel+32;

cout<<"Temperature in Celsius="<<tfar<<endl;

cout<<"Temperature in Fahrenheit="<<tfar<<endl;

}

2. Write a complete C++ program to input temperature in Fahrenheit and convert it into Celsius.

Display temperature in Celsius on the screen.

#include<iostream.h>

void main()

{

double tfar;

cout<<"Temperature in Fahrenheit? "; cin>>tfar;

double tcel=(tfar-32)/1.8;

cout<<"Temperature in Fahrenheit="<<tfar<<endl;

cout<<"Temperature in Celsius="<<tfar<<endl;

}

2. Write a complete C++ program to input radius of a circle; calculate area and circumference

of the circle. Display area and circumference on the screen.

#include<iostream.h>

void main()

{

double rad;

cout<<"Input radius? "; cin>>rad;

double area=3.14*rad*rad, circum=2*3.14*rad;

cout<<"Area ="<<area<<endl;

cout<<"Circumference="<<circum<<endl;

}

4. Write a complete C++ program to input radius of a sphere; calculate surface area and volume

of the sphere. Display surface area and volume on the screen.

#include<iostream.h>

void main()

{

double rad;

cout<<"Input radius? "; cin>>rad;

double sar=4*3.14*rad*rad, vol=4/3.0*3.14*rad*rad*rad;

cout<<"Suface Area="<<sar<<endl;

cout<<"Volume ="<<vol<<endl;

}

C++ Notes Class XI Data Types, Console Input and Output

5. Write a complete C++ program to input radius and height of a solid cylinder; calculate

surface area and volume of the solid cylinder. Display surface area and volume on the screen.

#include<iostream.h>

void main()

{

double rad, ht;

cout<<"Input radius? "; cin>>rad;

cout<<"Input height? "; cin>>ht;

double sar=2*3.14*rad*(rad+ht);

double vol=3.14*rad*rad*ht;

cout<<"Radius ="<<rad<<endl;

cout<<"Height ="<<ht<<endl;

cout<<"Suface Area="<<sar<<endl;

cout<<"Volume ="<<vol<<endl;

}

6. Write a complete C++ program to input base and height of a triangle; calculate area of a

triangle. Display area of the triangle on the screen.

#include<iostream.h>

void main()

{

double base, ht;

cout<<"Input base ? "; cin>>base;

cout<<"Input height? "; cin>>ht;

double area=0.5*base*ht;

cout<<"Base ="<<area<<endl;

cout<<"Height ="<<ht<<endl;

cout<<"Area of Triangle="<<area<<endl;

}

7. Write a complete C++ program to input length of three side of a triangle; calculate area of a

triangle using Heron’s formula. Display area of the triangle on the screen.

#include<iostream.h>

#include<math.h>

void main()

{

double a, b, c;

cout<<"Length of 1st side? "; cin>>a;

cout<<"Length of 2nd side? "; cin>>b;

cout<<"Length of 3rd side? "; cin>>c;

double s=(a+b+c)/2;

double area=sqrt(s*(s-a)*(s-b)*(s-c));

cout<<"Length of 1st side="<<a<<endl;

cout<<"Length of 2nd side="<<b<<endl;

cout<<"Length of 3rd side="<<c<<endl;

cout<<"Area of the triangle="<<area<<endl;

}

C++ Notes Class XI Data Types, Console Input and Output

8. Write a complete C++ program to input 3 coefficient of a quadratic equation (ax
2
+bx+c=0);

calculates two roots of the quadratic equation. Display two roots on the screen.

#include<iostream.h>

#include<math.h>

void main()

{

double a, b, c;

cout<<"Coefficient of x^2? "; cin>>a;

cout<<"Coefficient of x ? "; cin>>b;

cout<<"Constant Term ? "; cin>>c;

double d=b*b-4*a*c;

double x1=(-b+sqrt(d))/(2*a), x2=(-b-sqrt(d))/(2*a);

cout<<"x1="<<x1<<endl;

cout<<"x2="<<x2<<endl;

}

9. Write a complete C++ program to input name of a student (string), theory marks (out of 70),

practical marks (out of 30) and weekly test marks (out of 40); calculate term total (theory +

practical) and grand total (80% of term total + 50% of weekly test). Display name, theory

marks, practical marks, weekly test marks, term total and grand total on the screen.

#include<iostream.h>

#include<stdio.h>

void main()

{

char name[20];

double theo, prac, wtest;

cout<<"Student Name? ";

gets(name);

cout<<"Theory marks[0-70]? ";

cin>>theo;

cout<<"Practical marks[0-30]? ";

cin>>prac;

cout<<"Weekly Test marks[0-40]? ";

cin>>wtest;

double term=theo+prac, gtot=0.8*term+0.5*wtest;

cout<<"Name ="<<name<<endl;

cout<<"Theory ="<<theo<<endl;

cout<<"Practical ="<<prac<<endl;

cout<<"Term Total ="<<term<<endl;

cout<<"Weekly Test="<<wtest<<endl;

cout<<"Grand Total="<<gtot<<endl;

}

10. Write a complete C++ program to input employee name (string), basic salary; calculate

house rent (40% of basic salary), dearness allowance (65% of basic salary), city allowance

(15% of basic salary), gross salary (basic salary + house rent + dearness allowance + city

allowance), provident fund deductions (10% of gross salary) and net salary (gross salary -

provident fund deductions). Display basic salary, house rent, dearness allowance, city

allowance, gross salary, provident fund deductions and net salary on the screen.

C++ Notes Class XI Data Types, Console Input and Output

#include<iostream.h>

#include<stdio.h>

void main()

{

char name[20];

double basic;

cout<<"Employee Name? "; gets(name);

cout<<"Basic Salary? "; cin>>basic;

double hrent=0.4*basic;

double dallow=0.65*basic;

double callow=0.15*basic;

double gross=basic+hrent+dallow+callow;

double pfund=0.1*gross;

double net=gross-pfund;

cout<<"Name ="<<name<<endl;

cout<<"Basic Salary ="<<basic<<endl;

cout<<"House Rent ="<<hrent<<endl;

cout<<"Dearness Allowance ="<<dallow<<endl;

cout<<"City Allowance ="<<callow<<endl;

cout<<"Gross Salary ="<<gross<<endl;

cout<<"Provident Fund ="<<pfund<<endl;

cout<<"Net Salary ="<<net<<endl;

}

