
ASP-OBJECTS 
 

vinodsrivastava.wordpress.com 

 

 
 
 

Working with ASP objects 
 
INTRODUCTION 

 
An object is a bundle of methods and properties, held in memory on the server , that we , 

the developer , can manipulate to accomplish programming tasks. 

Software objects feature properties(that describe the object) , methods (that allow the object 
to do things for your code) and event ( code that is executed automatically when a certain 
situation occurs). Thus, an object is described in three categories. These are properties, methods 
and events. 

Properties  it describe something about an object. Properties are something read/write . A 
read/write 

property can tell we something about the current state of the object , but we can also 

assign a new value to the property to deliberately change the state of the object. 

Methods   the task that an object can perform is called methods. Methods are actions that 
you can perform with or on an object .the cade in method is executed when it is called. 
For example :-response.write (“The name is “ & name) 
Here response.write invokes the write method of the response object. 
 
Events when an object tells the user to do something that happened is called an event. 

 
 

ASP OBJECT MODEL 
 

An object model is a representation of a set of objects and their relationships to one 

another. These relationships can take the form of containment, where one object is 

embedded inside of another .or they can take the form of parent-child relationship, where 

one object has a set of child objects associated with it. 
 

The ASP objects are : 
 Request  object  :provides  methods  and  properties  that  enable  your  ASP’s  to  

retrieve information from the client, including information from forms. 
 Response  object  :provides  methods  and  properties  that  enable  your  ASP’s  to  

send information, including HTML , to the client. 
 Application object :used to store information about your web application that can be 

made available to clients requesting pages from your site. 
 Session object :used to store information about a particular client’s browsing session. 
 Server object :provides methods and properties that enable your ASP’s to communicate 

with server. 



ASP-OBJECTS 
 

These objects are “intrinsic” to ASP. They are always available to server memory 
and always ready to use. 

 
 

REQUEST OBJECT  the request object is used to access data sent from the browser to 

server, most often transmitted from forms appearing on the web page . 
 

Request object collection 
 
 

Request.QueryString 
 
      This collection is used to retrieve the values of the variables in the HTTP query string. 

– Information sent from a form with the GET method is visible to 

everybody (in the address field) and the GET method limits the amount of 

information to send. 

Example 

Code of frm2.html 

<html> 

<body> 

<form method="get" action="pg.asp"> 

First Name:  <input type="text" name="fname"><br 

Last Name: <input type="text" name="lname"><br> 

<input type="submit" value="Send"> 

</form> 

</body> 

</html> 

 
pg.asp  code 
<body> 

Welcome 

<%response.write(request.querystring("fname")) 

response.write("&nbsp;") 

response.write(request.querystring("lname")) 

%> 

</body> 
 
 

– If a user typed “Bill" and "Gates" in the form example above, the url sent 

to the server would look like this: 

http://localhost/pg.asp?fname=Bill&lname=Gates 
 
 
 
 
 
 
 
 
 
 
 
 

–  The example above writes this into the body of a document: 

-Welcome Bill Gates 

http://localhost/pg.asp


ASP-OBJECTS 
 

     Request.Form 

– It is used to retrieve the values of form elements posted to the HTTP 

request body, using the POST method of the <Form> Tag. 

–    Information sent from a form with the POST method is invisible to others. 

–    The POST method has no limitsyou can send a large amount of information. 

Code of frm2.html 
<html> 
<body> 
<form method="get" action="pg.asp"> 
First Name:  <input type="text" 
name="fname"><br> Last Name: <input 
type="text" name="lname"><br> 
<input type="submit" value="Send"> 
</form> 
</body> 
</html> 

 
pg.asp  code 
<body> 
Welcome 
<% response.write(request.form("fname")) 
response.write("&nbsp;") 
response.write(request.form("lname")) 
%> 
</body> 

–    If a user typed "Bill" and "Gates" in the form example above, the url sent to 
the server would look like this: 

http://localhost/pg.asp 
 
 
 
 
 
 
 

 

 

ServerVariables the server variables collection holds the entire HTTP headers and also 

additional items of information about the server and request. 

– It  is  used  to  retrieve  the  values  of  predetermined  environment  variables.These  

values originate when client requests the server. 

–    Syntax:<% Request.ServerVariables (server environmentvariable)%> 

 
 HTTP_USER_AGENTit lists the compatibility , name and version of the browser . 
 REMOTE_ADDRunmapped user-name string send in by the user. 
 REMOTE_HOST the name of the host making request. 
 SERVER_NAME the server’s host name , IP address as it would appear in self-   

     referencing  URLs . 
 SERVER_PORT the port number to which the request was sent. 
 SERVER_SOFTWAREthe name and version of the server software that answer the  

    Request and run the gateway. 
 REQUEST_METHODused  to make the request. For HTTP , this is GET, HEAD , POST   

etc. 
 
 

http://localhost/pg.asp


ASP-OBJECTS 
 

 
Example 
<html> 
<body> 
<p><b>You are browsing this site with:</b> 
<%Response.Write(Request.ServerVariables("http_user_agent"))%></p> 
<p><b>Your IP address is:</b> 
<%Response.Write(Request.ServerVariables("remote_addr"))%></p> 
<p><b>The DNS lookup of the IP address is:</b> 
<%Response.Write(Request.ServerVariables("remote_host"))%></p> 
<p><b>The method used to call the page:</b> 
<%Response.Write(Request.ServerVariables("request_method"))%></p> 
<p><b>The server's domain name:</b> 
<%Response.Write(Request.ServerVariables("server_name"))%></p> 
<p><b>The server's port:</b> 
<%Response.Write(Request.ServerVariables("server_port"))%></p> 
<p><b>The server's software:</b> 
<%Response.Write(Request.ServerVariables("server_software"))%></p> 
</body> 
</html> 

 

 
 

Cookiescookies are text files written by the client browser , containing information sent 

by a server, which reside on the user’s computer. 

Clientcertificateit is a digital certificate exchanged between clients and server to verify 
the identity of the user attempting to contact the server. 

 
Property and  Methods 
TotalBytes 
It specifies the total number of bytes the client has sent in the body of the request. property 
is read-only 
Syntax: 
Counter = Request.TotalBytes 
Counter - Specifies a variable to receive the total number of bytes that the client sends in 
the request. Example: 
<% Response.Write(Request.TotalBytes) %> 

 
 Binaryreadmethod it retrieves data sent to the server from the clients as part of a 

POST  request sent by a form and store it in a Safe Array of bytes. 
 

 
 



ASP-OBJECTS 
 

RESPONSE OBJECT  the response object is used by a script to send information from the 
server to the browser. 

 
Response Object – Properties 

 
•     Buffer 

It provides control of when the data is to be sent to the client.. 
Syntax: <%Response.Buffer [= flag] %> 
Flag is True or False. This line is put on the top of the ASP 
page. 

When it is set to True (default value)the server won’t respond to client until 
whole page is 
processed or until Flush or End method are called (i.e, whole page is kept in a buffer 
and showed after completion). 
If it is set to False then server streams the page to the client as it is created. 

 
•     CacheControl 

It is used to control whether the page will be cached by the proxy 
server or not. 

Syntax:Response.CacheControl [= Cache Control Header ] 
Cache Control Header - Value is Public or Private 

Default value is Private – This setting tells the proxy server that the contents of an ASP 
are private to a particular user and should not be cached. 

 
•     Expires 

It specifies the length of time after which page caching on a browser 
expires and fresh copy is retrieved. 

Syntax:Response.Expires [= number] 
number -The time in minutes after which the page caching 
expires. 

–    Example: 
<%Response.Expires = 5%> 

 The page will be removed form cache and a fresh page picked up after 5minutes. 
 

•     ExpiresAbsolute 
– This property specifies the date and time at which a page caching on a browser 

expires.When a page will not be changed very often, to extend the amount of time 
that the browser uses its copy of a page from the cache. 

Syntax:Response.ExpiresAbsolute [= [date] [time]] 
number - The time in minutes before the page expires 

–         Example:<% Response.ExpiresAbsolute=#Apr 1,2001 00:00:00# %> 
 The page will be removed form cache and a fresh page picked up on 1st 

April’2001. 
 
 
 
 

Response object methods 
 

Write  methodThis  method  outputs  a  specified  string  to  the  browser  OR  outputs  the  
value  of  an expression to the browser. 

Syntax:<%Response.Write(String or Variable or Function)%> 
Example: 

<% Response.Write(“Hello World") %>  ‘Display String Hello World 
<% Response.Write(Time) %>             ‘ Display Current Time 

– Equivalent is the Output directive <%= %> 
<%= Time%> 



ASP-OBJECTS 
 

Redirect 
Redirect method it instructs thebrowser to connect to a different URL. 

Syntax           <%response.redirect “contect.html ”%> 
Clear 

Clear method empties the current page buffer without outputting the contents of 
the buffer. 

This method will cause a run-time error if Response.Buffer has not been set to TRUE. 
Syntax:          <%Response.Clear%> 

 
Flush 

Flush method sends any previously buffered output to the client immediately, 
but continues processing the script. 

This method will cause a run-time error if Response.Buffer has not been set to 
TRUE. 

Syntax           <%response.flush%> 
End 

End method causes the server to stop processing the script and sent the 
buffered output. Any further script instructions are not processed, nor is any 
remaining HTML sent. 

Syntax           <%response.end%> 
– 

Binarywrite method this method sends text to the browser without character-set 
conversions. 

 
Appendtolog method this method adds text to the web server log entry for this request 

Syntax:             <%Response.AppendToLog string%> 
. 

Example:<% Response.AppendToLog "My custom log message“ %> 
 
Example 
<% Response.Buffer= “True”%> 
<html> 
<body> 
<%Response.Write("1. India" & "<br>") 
Response.Write("2. USA" & "<br>") 
Response.clear 
Response.Write("3. Kuwait" & "<br>") 
Response.Flush 
Response.Write("4. UK" & "<br>") 
Response.clear 
Response.Write("5. Germany" & "<br>") 
Response.Ends 
Response.Write("6. Japan" & "<br>") 
Response.Write("7. France" & "<br>") 
%> 
</body> 
</html> 
 

Application object  
It is used to share information among all users of a given application.This information can 
be changed in one page and automatically gets reflected on all other pages. 
 
Application variables one of the features of an application is that we can  store 
information that can be accessed by all clients accessing the application. This information 
is store in what is known as an application scope variable. 

OUTPUT 
3. Kuwait 
5 Germany 
Explanation:  
Response. Clear will erase first two buffered output 
that is 1. India 2. USA 
But continue processing so 3. Kuwait will be buffered 
Response.Flush will send current buffered output 
immediately to browser and continue processing so 
 3. Kuwait will be displayed and 4.Uk go to buffer 
Response. Clear will erase it from buffer but process 
continue so Germany will go to buffer 
Response.End the current buffer to Browser and stop 
further processing of script  
So after Germany displayed on Browser no further 
output  



ASP-OBJECTS 
 

• Store and Retrieve Variable Values  
– Application variables can be accessed and changed by any page in the 

application.  
– Creating Application variables:  

<% Application(“Greetings")=“Welcome” %> 
– Retrieving an Application variable:  

    <% Response.Write(Application("Greetings")) %> 
– Once an Application variable has been assigned a value, it retains that value till the 

Web-Server shuts down.  
– There are two methods Remove and RemoveAll to remove items from the contents 

collection. 

– Remove Method  removes specific item from the collection whereas RemoveALL  

removes all items of the collection. 

• Lock Method 

– The Lock method blocks other clients from modifying the variables stored in the 
Application object, ensuring that only one client at a time can alter or access the 
Application variables who was currently accessing it. 

Syntax:  <%Application.Lock%> 
 

– Example: To Count the no. of visitors to the Web Site 
<% Application.Lock  
  NumClicks = Application("NumVisits") 
  NumClicks = NumClicks + 1  
  Application("NumVisits") = NumClicks 
  Application.Unlock %>  

To avoid 2 users to click exactly at the same time. 
 

• UnLock Method 
– The Unlock method enables other clients to modify the variables stored in the 

Application object after it has been locked using the Lock method. 
Syntax:    <% Application.UnLock %> 

– If Unlock method is not explicitly called then  the server unlocks the locked 
Application object when the .asp file ends or times out. 

 

• OnStart Event 
– This event is written in Global.asa file and is triggered once when the first page  

located in application is requested.It is not triggered again until after IIS service is 
stopped or application is unloaded. 
 
Syntax: 

<SCRIPT  LANGUAGE=ScriptLanguage RUNAT=Server>  
Sub Application_OnStart 
 . . .  
End Sub 

</SCRIPT> 
These events are coded in the Global.asa file. 

 This event is fired before the Session_OnStart event.  
 Only the Application and Server built-in objects are available in this event.  
 Referencing the Session, Request, or Response objects in this event causes an error. 



ASP-OBJECTS 
 

• OnEnd Event 
– This event is written in Global.asa file and is triggered when the application quits 

or web server is stopped by OS. 
Syntax:   
<SCRIPT LANGUAGE=ScriptLanguage RUNAT=Server>  
Sub Application_OnEnd 
 . . .  
End Sub 
</SCRIPT> 

 This event is fired afer the Session_OnEnd event.  
 Only the Application and Server built-in objects are available in this event.  
 The MapPath method of server object can’t be called in this event. 

 
 

 Session Object 
– The Session object is used to store information about each user entering the 

Web-Site and are available to all pages in one application.  
– Common information stored in session variables are user’s name, id, and 

preferences.  
– The server creates a new Session object for each new user, and destroys the 

Session object when the session expires or is abandoned or the user logs out.  
 

• Store and Retrieve Variable Values 
– The most important thing about the Session object is that you can store variables in 

it, like this:  
<% Session("username")=“Tripti" 

     Session("age")=24 %> 
– When the value is stored in a session variable it can be reached from any page in 

the ASP application by using: Session("username"):  
Welcome <%Response.Write(Session("username"))%>  

– You can also store user preferences in the Session object, and then access that 
preference to choose what page to return to the user.  

 
• Contents Collection 

– The Contents collection contains all the variables that have been added and stored 
in a Session object. 

– Syntax:  Session.Contents( Key ) 
Session.Contents("username") 

 
Methods: The Remove method can remove a variable from a session. 
Session.Contents.Remove(name|Index) 
Session.Contents.RemoveAll() 

– Example: Removes a session variable named "sale":  
<% If Session.Contents("age")<=18 then  
  Session.Contents.Remove("sale") 
End If  %> 
 

 SESSION OBJECTS-PROPERTIES 
• SessionID 

– The SessionID property is a unique identifier that is generated by the server when 
the session is first created and persists throughout the time the user remains at your 
web site. 



ASP-OBJECTS 
 

• The session ID is returned as a LONG data type and read only property 
– Syntax:  <%Session.SessionID%> 

– Example: This is used to track where the user goes and records the pages the user 
visits. 

<%Dim who,currentpage 
     who = session.sessionID 
     currentpage = Request.ServerVariables(“script_name”) 
     Response.AppendToLog  who%”:” currentpage %> 
 

• TimeOut 
– The Timeout property specifies the time before session ends automatically if client 

doesn’t makes the request. 
– Syntax:  Session.Timeout [ = nMinutes] 

• Default value is 20 minutes 
• Abandon Method 

– The Abandon method destroys all the objects stored in a Session object and 
releases their resources.It is used to manually end the session. 

Syntax:  <% Session.Abandon() %> 
– Example: 

<% Session.Abandon()  
   Session("userid")="" 
   Server.transfer("login.asp")%>  
 
 
SESSION OBJECTS-EVENTS 

• OnStart Event 
– The Session_OnStart event occurs when the server creates a new session, that is 

new user requests an ASP file and is written in Global.asa file. 
– Syntax: 

<SCRIPT LANGUAGE=ScriptLanguage RUNAT=Server>  
Sub Session_OnStart 
 . . .  
End Sub 

</SCRIPT> 
These events are coded in the Global.asa file. 

 The server processes this script prior to executing the requested page. 
 This event is a good time to set any session-wide variables, because they will be set before 

any pages are accessed. 
 All the built-in objects can be accessed in this event. 
 Session only starts if there is a session_onstart  routine. 

 
• OnEnd Event 

– The Session_OnEnd event occurs when a session is abandoned or times out or a 
user has not requested or refreshed a page in the ASP application for a specified 
period.This event is written in Global.asa file. 

– Syntax: 
<SCRIPT LANGUAGE=ScriptLanguage RUNAT=Server>  
Sub Session_OnEnd 
 . . .  
End Sub 
</SCRIPT> 

 
 



ASP-OBJECTS 
 

 
The Global.asa file  

– This file is an optional file containing declarations of objects, variables, and methods 
that can be accessed by every page in an ASP application . 

– The Global.asa file must be stored in the root directory of the ASP application 
which is identified as the virtual directory and each application having only one 
Global.asa.. 

– Global.asa files can contain only the following:  
• Application events  
• Session events  
• <object> declarations  
• TypeLibrary declarations  

Changes to the Global.asa file require a restart of the server to recognize them 
 

• Standard format of Global.asa 
– Subroutines are created to handle these events in the Global.asa file:  

<script language="vbscript" runat="server"> 
sub Application_OnStart 
  ......some vbscript code 
end sub 
sub Application_OnEnd 
  ......some vbscript code 
end sub 
sub Session_OnStart 
  ......some vbscript code 
end sub 
sub Session_OnEnd 
  ......some vbscript code 
end sub 
</script> 

 
• The Global.asa contains four types of Standard Events:  

– Application_OnStart - This event occurs when the FIRST user calls the first page 
from an ASP application. This event occurs after Web server is restarted or after 
the Global.asa file is edited as changes to the file require a restart of the server to 
recognize them. Eg. DB Connectivity. 

– Application_OnEnd - This event occurs after the LAST user has ended the 
session, typically when a Web Server stops. Eg. Delete records to clean up settings 
after the Application stops or write information to log files.  

– Session_OnStart - This event occurs EVERY time a new user requests the first 
page in the ASP application.Eg. Login page to be displayed first time a user enters.  

– Session_OnEnd - This event occurs EVERY time a user ends a session. A user 
ends a session after a page has not been requested by the user for a specified time 
(by default this is 20 minutes). A session also ends if the user closes the web 
browser, or goes to someone else's web page. 

 
• Server Object 

– The Server object provides access to methods and properties on the Server  
– It enables to work with external Objects registered on the Server including 

Components that are bundled with IIS. 
 
 



ASP-OBJECTS 
 

Server Object – Properties 
 

• ScriptTimeOut 
– The ScriptTimeout property specifies the maximum amount of time a script can run 

before it is terminated. 
• The timeout will not take effect while a server component is processing. 
• The time is specified in seconds. The default value is 90 seconds, 

Syntax: <%Server.ScriptTimeout = NumSeconds%> 
– Example: <% Server.ScriptTimeout = 100 %> 

 
• CreateObject Method 

– The CreateObject method is used for creating an instance of a Server Component 
(External Object).  It can be used for any component that is correctly installed on 
our server.An instance must be explicitly created before using these external objects. 
– Syntax:  Set MyObj = Server.CreateObject( progID ) 
Set MyObj = Server.CreateObject( library.classID ) 

– Example: 
    <%Set MyAd = Server.CreateObject("MSWC.AdRotator")  %> 

– Destroying an object 
        <%Set MyObj = Nothing%> 
 

• Execute Method 

– The Execute method calls an .asp file and processes it as if it were part of the 
calling ASP script. 

– Syntax: Server.Execute( Path ) 
– Example:   <% Server.Execute (“abc.asp") %> 

 
• Transfer Method 

– The transfer method sends all of the information that has been assembled for 
processing by one .asp file to a second .asp file. 

– Syntax:   <%Server.Transfer(Path)%> 
– Example:  <% Server.Transfer(“abc.asp”) %> 

 
• MapPath Method 

– The MapPath method returns maps the specified relative or virtual path to the 
corresponding physical directory path on the server. 

– Syntax: <%Server.MapPath(“Virtual Path”)%> 
– Example: <%Server.MapPath(www.myfile.com/thefile.asp)%> 

It returns the actual physical path where the file actually resides like 
C:\inetpub\wwwroot\thefile.asp 

 
Example 
example.asp 
<% 
Response.Write("Welcome to Faips" &"<br>") 
Response.Write(" Explore " &"<br>")) 
Server.Execute("lab.asp") 
Server.Transfer("School.asp") 
Response.Write(" Hope You Enjoyed ") 
%> 

 

http://www.myfile.com/thefile.asp)%25


ASP-OBJECTS 
 

 
lab.asp 
<% 
Response.Write("The Multimedia Lab " &"<br>") 
Response.Write(" Hope You Like the Lab " &"<br>") 
%> 
 
School.asp 
<% 
Response.Write("School has 5000 Students & 350 teachers" &"<br>") 
%> 
 
Output 

Welcome to Faips 
Explore  
The Multimedia Lab  
Hope You Like the Lab  
School has 5000 Students & 350 teachers 

 
“ 
 
 
 
 
 
 

Error Object 
– The ASPError object is used to get information of any error that occurs in scripts 

in an ASP page.  
– The ASPError object is created when Server.GetLastError is called, so the error 

information can only be accessed by using the Server.GetLastError method. 

– ASPError Object 
– Syntax :     <% ASPError.property %> 

Property is read-only giving information about the error. 
ASPCode : Returns an error code generated by IIS. 
Source     : Returns the actual source code of the line that caused the error. 
File        : Returns name of .asp file being processed when error occurred. 
Line        : Indicates the line within the .asp file that generated the error. 
Column    : Indicates column position in the .asp file that generated the error. 
Description    : Returns a short description of the error 
ASPDescription : Returns a detailed description of the ASP-related error. 

 

Explanation 
First two line of example.asp containing response write so 
they will be displayed as written 
Server.Execute(lab.asp) will bring the output of lab.asp 
into this file so third line will be displayed along first two 
lines 
Server.Transfer(School.asp)  will take the first three 
output and transfer it to school.asp so these will be 
displayed and then code of school .asp  
Since the complete control go to school.asp so no further 

processing of script in example.asp so the last line 

response.Write(“Hope You Enjoyed”) will not be displayed 

file:///C:/Users/Vinod/Documents/vbob742t.htm
file:///C:/Users/Vinod/Documents/vbob7fs5.htm
file:///C:/Users/Vinod/Documents/vbob3wbp.htm
file:///C:/Users/Vinod/Documents/vbob7m1x.htm
file:///C:/Users/Vinod/Documents/vbob2xf2.htm
file:///C:/Users/Vinod/Documents/vbob5pke.htm
file:///C:/Users/Vinod/Documents/vbob79ke.htm

