9/18/2016

VKS_LEARNING HuB IR
Bimplifying ICT - N

Infix Notation

e To add A, B, we write
A+B

e To multiply A, B, we write
A*B

g : t 5 The operators ('+' and '*') go in between the

e This is "Infix" notation.

__
ChN

Prefix Notation Postfix Notation
e |nstead of saying "A plus B", we could say "add ¢ Another alternative is to put the operators
A,B " and write after the operands as in
+AB AB+
e "Multiply A,B" would be written and
AB AB
e This is Prefix notation. * This is Postfix notation.

!aren!"eses

¢ Evaluate 2+3*5.
e + First:
(2+3)*5= 5¢5/=:25

Pre In Post

¢ The terms infix, prefix, and postfix tell us s=HiEIRSE?
whether the operators go between, before, or 2+(3*5) = 2+15 = 17

after the operands. ¢ Infix notation requires Parentheses.

U!"a! a!ou! !rellx |!o!a!|on I

S HARTRE =
= %345
=+4+215=17
i n e
s LB Bl
=#55:=25

* No parentheses needed!

!onclusmn:

¢ Infix is the only notation that requires
parentheses in order to change the order in
which the operations are done.

|n||x !0 !re|lx !onversmn

Move each operator to the left of its operands &
remove the parentheses:

wB)*(C+D))

9/18/2016

!OS!llX |!o!a!|on

)2 G
= 2355
=215+ =117
) (81 IS
=23+5*
=55%*=25

¢ No parentheses needed here either!

!u"y !arent!esue! !xpresswn

¢ A FPE has exactly one set of Parentheses
enclosing each operator and its operands.

¢ Which is fully parenthesized?
(A+B)*C
((A+B)*C)
((A+B)*(C))

*

|n||x !O !rellx !OI"IVGI’SIOH

Move each operator to the left of its operands &
remove the parentheses:

(+A B *(C+D))

L/

NTiIX to Frerix conversion

Move each operator to the left of its operands &
remove the parentheses:

*+A B (C+D)

U

NTixX to Postrix

(((A+B)*C)-((D+E)/F))
A A\~

AB+C*DE+F/-
e Operand order does not change!
e Operators are in order of evaluation!

5. If the incoming symbol has higher precedence than the top of
the stack, push it on the stack.

6. If the incoming symbol has equal precedence with the top of
the stack, use association. If the association is left to right, pop
and print the top of the stack and then push the incoming
operator. If the association is right to left, push the incoming
operator.

7.1f the incoming symbol has lower precedence than the symbol
on the top of the stack, pop the stack and print the top operator.
Then test the incoming operator against the new top of stack.

8. At the end of the expression, pop and print all operators on the
stack. (No parentheses should remain.)

VCT

|y

9/18/2016

nrix to Prerix Conversion
Move each operator to the left of its operands &

remove the parentheses:
*+AB+C D

Order of operands does not change!

Summary of the rules follows:
1. Print operands as they arrive.

2. If the stack is empty or contains a left parenthesis on top, push
the incoming operator onto the stack.

3. If the incoming symbol is a left parenthesis, push it on the stack.
4. If the incoming symbol is aright parenthesis, pop the stack and

print the operators until you see a left parenthesis. Discard the pair
of parentheses.

Infix to postfix conversion

INFIX = s
\ (a+b-c)*d—(e+f)|

ROST:

—— i ‘

INFIX

9/18/2016

+b-c)*d—(e+f)

POSTFIX

a

C
INFIX
a+b-c)*d—(e+f) \
POSTFIX

C

INFIX
b-c)*d—(e+f) \

POSTFIX

a]

INFIX

-c)*d—(e+f)

POSTFIX

‘ab

INFIX
c)*d—(e+f) ‘

POSTFIX
ab+ ‘

INFIX

)*d—(e+f)

POSTFIX

‘ab+c

INFIX

9/18/2016

d-(e+f)

POSTFIX

‘ab+c-

INFIX

(e+f)

POSTFIX

‘ab+c—d*

<
INFIX
*d—(e+f) \
POSTFIX
ab+c- ‘

€
INFIX
~(e+f) |
POSTFIX
ab+c-d J

<
INFIX
e+f) ‘
POSTFIX
ab+c-d* ‘

INFIX

+1)

POSTFIX

‘ab+c—d*e

SQ II(X O postrix conversion

INFIX

n |
POSTFIX

‘ab+c—d*e

INFIX

POSTFIX
‘ab+c—d*ef+ ‘

(A+B)*C+D/(E+F*G)-H

(A*B+C)/D-E/(F+G)

A-B-C*(D+E/F-G)-H
A+((B-C*D)/E)+F-G/H
(A*B-(C-D))/(E+F)

A*BAC+D

SIQ!IX !0 pOS!IIX conversion

9/18/2016

POSTFIX

‘ab+c—d*ef ‘

POSTFIX

‘ab+c—d*ef+-

(A*B+C)/D-E/(F+G)
A-B-C*(D+E/F-G)-H
A+((B-C*D)/E)+F-G/H

(A*B-(C-D))/(E+F)

A*BAC+D

(A+B)*C+D/(E+F*G)-H AB+C*DEFG*+/+H-

AB*C+D/EFG+/-
AB-CDEF/+G-*-H-
ABCD*-E/+F+GH/-

AB*CD—EF+/

ABCA*D+

(
(
A
*
B
+
©
|)
‘ /
D
E

Evaluation of Postfix notation

The Postfix notation is used to represent algebraic
expressions. The expressions written in postfix form are
evaluated faster compared to infix notation as parenthesis are
not required in postfix. i
Keep the following points for evaluation postfix
4 expressions. '
1) Create a stack to store operands (or values).
2) Scan the given expression and do following for every
scanned element.
» If the element is a number, push it into the stack j
» f the element is a operator, pop operands for the
operator from stack. Evaluate the operator and push
the result back to the stack
3) When the expression is ended, the number in the stack is
the final answer 1 ! :

9/18/2016

- STACK POSTFIX
I O 5 S—
T

C

N

INPUT) STACK) POSTFIX)

AB*C+D/EFG+/-

|O+T|

+

Infix Expression (5+3) * (8-2)
Postfix Expression 5 3 + 8 2 - *

i Priarfis Fupaetsing san b mkisned fy ing Stack Daa St o4 fellous

R,_eadhing Stack Eva!uated
Symibo Cperations 2
Initially :Stack is Empty [Nathing
5 push(s) [Nothing
5]

1 3 push(3)

L]

unlisel = pop(; /1

valesd - popil; i/ 5

nult = 5 + 30408
Push{d)

(5+3)

- valuel = pop()
¢ value2 = pap{)

+ { ot = valus? + valuel

push(result)

(5+3)

g2 pushe®)

lel=] | if=l []

Trsplay (et}

e TSt =pop0 [| 48

Infix Expression (5 +3) * (8-2) =48
Postfix Expression5 2 + 8 2 - * value is 48

54 6 + 7 4 - * 9 [/ 35 15 + +

54

AN+ O

*

+ 70

(2]
1 2 pushiz) g7 (5+3)
B
p——
valuel = pop() — Sl = pope 18
. :valueZ = popf) || g
{ result < valued - valusl | G i
pushiresul) g (8 - 2)
L Bl 1) 53
} H wahsel = popd); i &
l £ valued - papll A/ E
ivaluel = popd) == | run-ses e
" ¢ valued = popl) || Pushi 48)
+ resule = value2 * valuel
¢ push(result) 5] (6 * 8)
— 5+3)*(E-2

9/18/2016

STACK
“ TO STACK (operand are pushed to stack)

- TO STACK(operand are pushed to stack) n

AND AND CALCULATE VALUE WITH
OPERATOR (4+5) AND THE RESULT TO STACK

- TO STACK (operand are pushed to stack) n
- AND CALCULATE VALUE WITH

- o

“

AND AND CALCULATE VALUE WITH
OPERATOR () AND THE TO STACK

