
9/18/2016

1

VKS-LEARNING HUB

Prefix, Postfix, Infix Notation

VKS-LEARNING HUB

Infix Notation
• To add A, B, we write

A+B
• To multiply A, B, we write

A*B
• The operators ('+' and '*') go in between the

operands ('A' and 'B')
• This is "Infix" notation.

VKS-LEARNING HUB

Prefix Notation
• Instead of saying "A plus B", we could say "add

A,B " and write
+ A B

• "Multiply A,B" would be written
* A B

• This is Prefix notation.

VKS-LEARNING HUB

Postfix Notation
• Another alternative is to put the operators

after the operands as in
A B +

and
A B *

• This is Postfix notation.

VKS-LEARNING HUB

• The terms infix, prefix, and postfix tell us
whether the operators go between, before, or
after the operands.

Pre A In B Post

VKS-LEARNING HUB

Parentheses

• Evaluate 2+3*5.
• + First:

(2+3)*5 = 5*5 = 25
• * First:

2+(3*5) = 2+15 = 17
• Infix notation requires Parentheses.

9/18/2016

2

VKS-LEARNING HUB

What about Prefix Notation?

• + 2 * 3 5 =
= + 2 * 3 5
= + 2 15 = 17

• * + 2 3 5 =
= * + 2 3 5
= * 5 5 = 25

• No parentheses needed!

VKS-LEARNING HUB

Postfix Notation

• 2 3 5 * + =
= 2 3 5 * +
= 2 15 + = 17

• 2 3 + 5 * =
= 2 3 + 5 *
= 5 5 * = 25

• No parentheses needed here either!

VKS-LEARNING HUB

Conclusion:

• Infix is the only notation that requires
parentheses in order to change the order in
which the operations are done.

VKS-LEARNING HUB

Fully Parenthesized Expression

• A FPE has exactly one set of Parentheses
enclosing each operator and its operands.

• Which is fully parenthesized?
(A + B) * C

((A + B) * C)
((A + B) * (C))

VKS-LEARNING HUB

Infix to Prefix Conversion

Move each operator to the left of its operands &
remove the parentheses:

((A + B) * (C + D))

VKS-LEARNING HUB

Infix to Prefix Conversion

Move each operator to the left of its operands &
remove the parentheses:

(+ A B * (C + D))

9/18/2016

3

VKS-LEARNING HUB

Infix to Prefix Conversion

Move each operator to the left of its operands &
remove the parentheses:

* + A B (C + D)

VKS-LEARNING HUB

Infix to Prefix Conversion

Move each operator to the left of its operands &
remove the parentheses:

* + A B + C D

Order of operands does not change!

VKS-LEARNING HUB

Infix to Postfix

(((A + B) * C) - ((D + E) / F))

A B + C * D E + F / -
• Operand order does not change!
• Operators are in order of evaluation!

VKS-LEARNING HUB

Summary of the rules follows:

1. Print operands as they arrive.

2. If the stack is empty or contains a left parenthesis on top, push
the incoming operator onto the stack.

3. If the incoming symbol is a left parenthesis, push it on the stack.

4. If the incoming symbol is a right parenthesis, pop the stack and
print the operators until you see a left parenthesis. Discard the pair
of parentheses.

VKS-LEARNING HUB

5. If the incoming symbol has higher precedence than the top of
the stack, push it on the stack.

6. If the incoming symbol has equal precedence with the top of
the stack, use association. If the association is left to right, pop
and print the top of the stack and then push the incoming
operator. If the association is right to left, push the incoming
operator.

7. If the incoming symbol has lower precedence than the symbol
on the top of the stack, pop the stack and print the top operator.
Then test the incoming operator against the new top of stack.

8. At the end of the expression, pop and print all operators on the
stack. (No parentheses should remain.)

VKS-LEARNING HUB

Infix to postfix conversion

INFIX

POST

(a + b - c) * d – (e + f)

9/18/2016

4

VKS-LEARNING HUB

INFIX

POSTFIX

a + b - c) * d – (e + f)

(

Stack

VKS-LEARNING HUB

INFIX

POSTFIX

+ b - c) * d – (e + f)

(

a

Stack

VKS-LEARNING HUB

Infix to postfix conversion
INFIX

POSTFIX

b - c) * d – (e + f)

(

a

+

Stack

VKS-LEARNING HUB

INFIX

POSTFIX

- c) * d – (e + f)

(

a b

+

Stack

VKS-LEARNING HUB

INFIX

POSTFIX

c) * d – (e + f)

(

a b +

-

Stack

VKS-LEARNING HUB

INFIX

POSTFIX

) * d – (e + f)

(

a b + c

-

Stack

9/18/2016

5

VKS-LEARNING HUB

INFIX

POSTFIX

* d – (e + f)

a b + c -

Stack

VKS-LEARNING HUB

INFIX

POSTFIX

d – (e + f)

a b + c -

*

Stack

VKS-LEARNING HUB

INFIX

POSTFIX

– (e + f)

a b + c - d

*

Stack

VKS-LEARNING HUB

INFIX

POSTFIX

(e + f)

a b + c – d *

-

Stack

VKS-LEARNING HUB

INFIX

POSTFIX

e + f)

a b + c – d *

-

(

Stack

VKS-LEARNING HUB

INFIX

POSTFIX

+ f)

a b + c – d * e

-

(

Stack

9/18/2016

6

VKS-LEARNING HUB

Infix to postfix conversion

INFIX

POSTFIX

f)

a b + c – d * e

-

(

+

Stack

VKS-LEARNING HUB

Infix to postfix conversion

INFIX

POSTFIX

)

a b + c – d * e f

-

(

+

Stack

VKS-LEARNING HUB

INFIX

POSTFIX

a b + c – d * e f +

-

Stack

VKS-LEARNING HUB

INFIX

POSTFIX

a b + c – d * e f + -

stack

VKS-LEARNING HUB

INFIX POSTFIX
(A + B) * C + D / (E + F * G) - H

(A * B + C) / D - E / (F + G)

A - B - C * (D + E / F - G) - H

A + ((B - C * D) / E) + F - G / H

(A * B - (C - D)) / (E + F)

A * B ^ C + D

VKS-LEARNING HUB

INFIX POSTFIX

(A + B) * C + D / (E + F * G) - H A B + C * D E F G * + / + H -

(A * B + C) / D - E / (F + G) A B * C + D / E F G + / -

A - B - C * (D + E / F - G) - H A B - C D E F / + G - * - H -

A + ((B - C * D) / E) + F - G / H A B C D * - E / + F + G H / -

(A * B - (C - D)) / (E + F) AB*CD—EF+/

A * B ^ C + D A B C ^ * D +

9/18/2016

7

VKS-LEARNING HUB

STACK POSTFIX

(A + B) * C + D / (E + F * G) - H

INPUT
((
(((
A ((A
+ ((+ A
B ((+ AB
) (AB+
* (* AB+
C (* AB+C
+ (+ AB+C*
D (+ AB+C*D
/ (+/ AB+C*D
((+/(AB+C*D

VKS-LEARNING HUB

INPUT STACK POSTFIX

AB+C*DEFG*+/+H-

E (+/(AB+C*DE
+ (+/(+ AB+C*DE
F (+/(+ AB+C*DEF
* (+/(+* AB+C*DEF
G (+/(+* AB+C*DEFG
) (+/ AB+C*DEFG*+
- (- AB+C*DEFG*+/+

H (- AB+C*DEFG*+/+H
) EMPTY AB+C*DEFG*+/+H-

VKS-LEARNING HUB

INPUT STACK POSTFIX
(
(
A
*
B
+
C
)
/
D
-
E

(A * B + C) / D - E / (F + G) VKS-LEARNING HUB

INPUT STACK POSTFIX
/
(
F
+
G
)
)

A B * C + D / E F G + / -

(A * B + C) / D - E / (F + G)

VKS-LEARNING HUB

The Postfix notation is used to represent algebraic
expressions. The expressions written in postfix form are
evaluated faster compared to infix notation as parenthesis are
not required in postfix.
Keep the following points for evaluation postfix

expressions.
1) Create a stack to store operands (or values).
2) Scan the given expression and do following for every

scanned element.
• If the element is a number, push it into the stack
• f the element is a operator, pop operands for the

operator from stack. Evaluate the operator and push
the result back to the stack

3) When the expression is ended, the number in the stack is
the final answer

Evaluation of Postfix notation

VKS-LEARNING HUB

9/18/2016

8

VKS-LEARNING HUB VKS-LEARNING HUB

VKS-LEARNING HUB VKS-LEARNING HUB

INPUT ACTION STACK

4 5 + 9 * 3 + 3 /

4 PUSH 4 TO STACK (operand are pushed to stack) 4

5 PUSH 5 TO STACK(operand are pushed to stack) 5
4

+ POP 5 AND POP 4 AND CALCULATE VALUE WITH
OPERATOR (4+5) AND PUSH THE RESULT TO STACK

9

9 PUSH 9 TO STACK (operand are pushed to stack) 9
9

* POP 9 AND POP 9 AND CALCULATE VALUE WITH
OPERATOR (9* 9) AND PUSH THE RESULT TO STACK

81

3 PUSH 3 TO STACK 3
81

+ POP 3 AND POP 81 AND CALCULATE VALUE WITH
OPERATOR (81+3) AND PUSH THE RESULT TO STACK

84

3 PUSH 3 TO STACK 3
84

/ POP 3 AND POP 84 AND CALCULATE VALUE WITH
OPERATOR (84/3) AND PUSH THE RESULT TO STACK 28

VKS-LEARNING HUB

54 6 + 7 4 - * 9 / 35 15 + +
INPUT ACTION STACK

54
6
+
7
4
-
*
9
/

35
+
+ 70

