
C++ Notes Class XII Pointer and It’s Application

 Page 1 of 17

Hexadecimal Integer Constant: In a programming language like C++, it is possible to represent an

integer constant in different form. Generally an integer constant is represented as a Decimal integer

constant. A decimal integer constant consists of any 10 digits (0-9). Integers 29, 73545, 8545, -34, -

428954 and 3945 are example of Decimal integer constant. In C++ it is also possible to represent an

integer constant as a Hexadecimal integer. A Hexadecimal integer constant consists of any 16 digits (0-

9, A-F). Integers 2A, 4B6C, ABCD and F16 are example of Hexadecimal integer constant. In a C++

program Hexadecimal integer constant is prefixed by 0x. For example 1B4C is a Hexadecimal integer

constant but in C++ program it will be represented as 0x1B4C. A example is given below:

#include<iostream.h>

void main()

{

int h=0x1B4C;

int d=174911;

cout<<"Hex="<<h<<" , "<<"Dec="<<d<<endl;

cout.setf(ios::hex, ios::basefield);

cout<<"Hex="<<h<<" , "<<"Dec="<<d<<endl;

}

Running of the program produces following output:
Hex=6988 , Dec=174911

Hex=1B4C , Dec=2AB3F

Pointer
A variable in C++ has three characteristics – data type of the variable, value stored in the variable and

the address of variable. So far in our programming examples we have only used the first two

characteristics, that is, data type of the variable and the values stored in the variable. Address of a

variable represents the location of the variable in the computer’s main storage (RAM). The concept of

address of a variable is similar to address of house / flat / villa / shop in a city / town / village. To get the

address of a variable we use address operator (&) before a variable name. In C++ address of a variable is

also known as Pointer. Pointer (address) is displayed as Hexadecimal integer. An example is given

below:

#include<iostream.h>

void main()

{

int a=20;

double b=88.5;

cout<<"a="<<a<<" , b="<<b<<endl;

cout<<"&a="<<&a<<" , &b="<<&b<<endl;

cout<<"&b="<<&b<<endl;

}

Running of the program produces following output:
roll=20 , mark=88.5

&roll=0x0012ff88 , &mark=0x0012ff80

Diagrammatic representation of variables created (in the above program) their addresses:

a b

20 88.5

0012ff88 0012ff80

Variable a is assigned a value

20 and variable b is assigned

a value 88.5. First two

outputs display value stored

in the variable a and b. Last

two outputs display address

of the variables a and b.

Addresses of the variables are

displayed as Hexadecimal

integer.

Variable h is assigned a

Hexadecimal integer constant

while variable d is assigned

Decimal integer constant. First

2 outputs display values stored

in variables h and d as Decimal

integer. Last 2 outputs display

values stored in variables h and

d as Hexadecimal integer.

Variable Name

Value

Address

C++ Notes Class XII Pointer and It’s Application

 Page 2 of 17

Pointer Variable

To store an address of a variable we need to create a special type of variable called Pointer variable.

Creating a Pointer variable is similar to creating a variable of fundamental data type or array type.

Rule: DataType* PointerVarName;
DataType *PointerVarName;

DataType *PointerVarName1, *PointerVarName1, … ;

DataType could be fundamental data type or derived data type like structure type or class

type. Operator star (*) is needed between DataType and PointerVarName. Operator

star (*) implies that the variable that is being created is Pointer type. When using the

Pointer variable in the program, operator star (*) is never used, that is, in the program only

PointerVarName will be used.

Usage:
int* ip;

int *ip1, *ip2;

char* cp;

char *cp1, *cp2;

double* dp;

double *dp1, *dp2;

Example:
void main()

{

int a=20, *ip;

double b=88.5, *dp;

ip=&a;

dp=&b;

cout<<"a="<<a<<" , b="<<b<<endl;

cout<<"ip="<<ip;

cout<<" , dp="<<dp<<endl;

}

Running of the program produces following output:
a=20 , b=88.5

ip=0x0012ff88 , dp=0x0012ff80

Diagrammatic representation of variables created in the above program, is given below:

ip a

dp b

Generally it is expected that data type of the pointer variable and the date type of the variable whose

address is to be stored in the pointer variable must be same. A pointer to an integer stores an address of

an integer variable and a pointer to double stores address of a double variable. But suppose we mix data

type of the pointer variable and data type of the variable whose address is to be stored in the pointer

variable, then C++ compiler will flag a warning (Warning message: Suspicious Pointer Conversion).

An example is given below:

 Statement int* ip; creates an integer pointer

(pointer to an integer). An integer pointer can store

an address of an integer variable.

 Statement char* cp; creates a character pointer

(pointer to a character). A character pointer can store

an address of a character type variable.

 Statement double* dp; creates a floating-point

pointer (pointer to a floating-point). A floating-point

pointer can store an address of a floating-point type.

 Every pointer is allocated 4 bytes of memory.

20 0012ff88

88.5 0012ff80

Variable a=20 and ip (pointer to integer)

is created. Variable b=88.5 and dp

(pointer to double) is created. Pointer ip

stores address of a and dp stores address

of b. But creation of pointer variable and

assigning an address to it can be combined

as one statement. For example:
int* ip=&a;

double* dp=&b;

C++ Notes Class XII Pointer and It’s Application

 Page 3 of 17

#include<iostream.h>

void main()

{

int a=20, *ip;

double b=88.5, *dp;

ip=&b;

dp=&a;

cout<<"a="<<a<<" , b="<<b<<endl;

cout<<"ip="<<ip<<" , dp="<<dp<<endl;

}

Running of the program produces following output:
a=20 , b=88.5

ip=0x0012ff88 , dp=0x0012ff80

A pointer variable just like any other variable can be global variable or it can be a local variable. A

global pointer variable is created just after the header files and before any block where as a local pointer

variable is created inside a block. Default value of a global pointer variable is NULL (zero address)

and default value of a local pointer variable is a garbage address. A global pointer variable has all

the characteristics of a global variable and a local pointer variable has all the characteristics of a

local variable. If global pointer variable and a local pointer variable have same inside a block then

scope resolution operator (::) is to be used with global pointer variable name, so that, both the global

pointer variable and the local pointer variable can be used inside the block. A value NULL can be

assigned to any pointer variable (similar to assigning 0 to an integer or a floating point variable).

#include<iostream.h>

int* p1;

double *p2, *p;

void main()

{

int *p1, p;

double* p2;

cout<<"p1="<<p1<<" , p2="<<p2<<endl;

cout<<"g1="<<g1<<" , g2="<<g2<<endl;

p1=NULL;

p2=NULL;

cout<<"p1="<<p1<<" , p2="<<p2<<endl;

int a=20, *p=&a;

double b=88.5;

::p=&b;

cout<<"p="<<p<<" , ::p="<<::p<<endl;

}

Running of the program produces following output:
p1=0x0040a02c , p2=0x0040ff27

g1=0x00000000 , g2=0x00000000

p1=0x00000000 , p2=0x00000000

p=0x0012ff88 , ::p=0x0012ff80

Dereferencing (Indirection)

A pointer variable contains an address of a variable. Indirectly accessing a variable (memory location)

through a pointer variable (where the pointer variable is pointing to), is called Dereferencing or

Indirection. Unary operator star (*) is used as a dereferencing operator. An example is given below:

Local pointer variables p1 and p2 are

created but not initialised and hence

they display garbage address but

Global pointer variables g1 and g2 will

display NULL (zero address – default

value of a global pointer). After

assigning NULL to the local pointer

variables p1 and p2, pointer variables

lip and ldp display 0x00000000 –

zero address (NULL). Note the spelling

of NULL, all letters in uppercase and the

spelling is case sensitive. A pointer

containing NULL, is said to be

grounded.

Global pointer variable p is created as

pointer to double. Local pointer

variable p is created as pointer to int.

To use the global pointer variable p and

the local pointer variable p, scope

resolution operator (::) is used with the

global pointer variable name.

Pointer ip (integer pointer) stores

address of b (double variable) and

dp (double pointer) stores address of

a (integer variable). C++ compiler

will flag a warning and the Warning

Message is: Suspicious Pointer

Conversion. But the two pointer

variables display correct addresses

on the screen.

C++ Notes Class XII Pointer and It’s Application

 Page 4 of 17

#include<iostream.h>

void main()

{

int a=20, *ip=&a;

double b=88.5, *dp=&b;

cout<<"ip="<<ip<<endl;

cout<<"dp="<<dp<<endl;

cout<<"*ip="<<*ip<<endl;

cout<<"*dp="<<*dp<<endl;

}

Running of the program produces following output:
ip=0x0012ff88

dp=0x0012ff80

*ip=20

*dp=88.5

Operations on Pointer Variable

 A pointer variable can be assigned a value NULL.

struct student

{

char name[10];

double mark;

};
int* ip=NULL;

double* dp=NULL;

student* sp=NULL;

 A pointer variable can be assigned an address of a variable or an address of an array

struct student

{

char name[10];

double mark;

};
int x1=79, arr1[5]={34, 56, 44, 29, 62};

double x2=6.5, arr2[5]={4.5, 1.2, 3.4, 2.3, 5.6};

student x3={23, "Gajendra", 88.5};

student arr3[3]={ {"Chandana", 93.5},

{"Animesh", 90.0},

{"Farida", 82.5}};

int *ip1=&x1, *ip2=arr1;

double *dp1=&x2, *dp2=arr2;

student *sp1=&x3, *sp2=arr3;

 A pointer variable can be assigned a value stored in another pointer variable, provided both the

pointer variables are of the same data type
struct student

{

char name[10];

double mark;

};

Pointer variables ip and dp points to variables

a and b respectively. Expressions *ip and

*dp access variables a and b respectively.
cout<<"*ip="<<*ip<<endl;

Statement displays values stored in a indirectly

through the pointer ip.
cout<<"*dp="<<*dp<<endl;

Statement displays values stored in b

indirectly through the pointer variable dp.

C++ Notes Class XII Pointer and It’s Application

 Page 5 of 17

int x1=79, *ip1=&x1;

double x2=6.5, *dp1=&x2;

student x3={"Gajendra", 88.5}, *sp1=&x3;

int *ip2=ip1;

double *dp2=dp1;

student *sp2=sp1;

 A pointer variable can be assigned an address of a dynamically allocated memory location using

operator new. An operator delete can be used to deallocate dynamically allocated memory

pointed to by a pointer variable. Examples are given in the next page.

struct student

{

char name[10];

double mark;

};

int* ip=new int (79);

double* dp=new double (6.5);

student* sp=new student;

strcpy(sp->name, "Sandip");

sp->mark=88.5;

cout<<"*ip="<<*ip<<endl;

cout<<"*dp="<<*dp<<endl;

cout<<"Name ="<<sp->name<<endl;

cout<<"Mark ="<<sp->mark<<endl;

delete ip;

delete dp;

delete sp;

 Value stored in pointer variable can be displayed with cout

struct student

{

char name[10];

double mark;

};
int x1=79, *ip=&x1;

double x2=6.5, *dp=&x2

student x3={"Gajendra", 88.5}, *sp=&x3;

cout<<"ip="<<ip<<" , *ip="<<endl;

cout<<"dp="<<dp<<" , *dp="<<endl;

cout<<"sp="<<sp<<endl;

cout<<"Name="<<sp->name<<endl;

cout<<"Mark="<<sp->mark<<endl;

 Arithmetic operators + and - can be used with a pointer variable

An expression involving a pointer variable is a pointer. Generally the operators plus (+) and minus

(-) are used with a pointer variable. Examples are given below:

Example 1:
int ar[5]={25, 85, 13, 47, 78}, *p=arr;

cout<<"*p ="<<*p<<endl;

cout<<"*(p+1)="<<*(p+1)<<endl;

C++ Notes Class XII Pointer and It’s Application

 Page 6 of 17

cout<<"*(p+2)="<<*(p+2)<<endl;

ptr+=4;

cout<<"*p ="<<*p<<endl;

cout<<"*(p-1)="<<*(p-1)<<endl;

cout<<"*(p-2)="<<*(p-2)<<endl;

Running of the program segment produces following output:
*p =25

*(p+1)=85

*(p+2)=13

*p =78

*(p-1)=47

*(p-2)=13

Pointer p points to 1st element of the array ar[]. Statement cout<<*p<<endl; displays value

stored in the 1st element of array ar[]. Expression p+1 points to 2nd element of array ar[].

Statement cout<<*(p+1)<<endl; displays value stored in the 2nd element of array ar[].

Expression p+2 points to 3rd element of array ar[]. Statement cout<<*(p+2)<<endl;

displays value stored in the 3rd element of array ar[]. Statement p+=4; updates the address

stored in pointer p, pointer p points to 5th element of array ar[]. Statement cout<<*p<<endl;

displays value stored in the 5th element of array ar[]. Expression p-1 points to 4th element of

array ar[]. Statement cout<<*(p-1)<<endl; displays value stored in the 4th element of array

ar[]. Expression p-2 points to 3rd element of array ar[]. Statement cout<<*(p-2)<<endl;

displays value stored in the 3rd element of array ar[].

Example 2:
double arr[5]={2.3, 8.5, 4.7, 9.2, 6.3}, *p=arr;

cout<<"*p ="<<*ptr<<endl;

cout<<"*(p+2)="<<*(p+2)<<endl;

ptr+=3;

cout<<"*p ="<<*p<<endl;

cout<<"*(p-1)="<<*(p-1)<<endl;

p-=2;

cout<<"*p ="<<*p<<endl;

Running of the program segment produces following output:
*p =2.3

*(p+2)=4.7

*p =9.2

*(p-1)=4.7

*p =8.5

Example 3:
char song[]="Metallica-Nothing Else Matter", *p=song;

while (*p)

{

cout<<*p;

p+=1;

}

Running of the program segment produces following output:
Metallica-Nothing Else Matter

C++ Notes Class XII Pointer and It’s Application

 Page 7 of 17

Example 4:
struct student

{

char name[10];

double mark;

};
student a[6]={{"Suresh",93.5},{"Ankita",90.5},{"Dileep",88.5},

 {"Farida",82.5},{"Biresh",78.5},{"Nalini",75.5}};

student* p=a;

cout<<p->name<<" , "<<p->mark<<endl;

p+=2;

cout<<p->name<<" , "<<p->mark<<endl;

p+=1;

cout<<ptr->name<<" , "<<ptr->mark<<endl;

Running of the program segment produces following output:
Suresh , 93.5

Dileep , 88.5

Farida , 82.5

 Increment operator (++) and decrement operator (--) can be used with a pointer variable

Increment operator and decrement operator is used with a pointer variable when the pointer variable

is pointing to an array. If ptr is a pointer pointing to an element of an array, then ptr++ will point

to next element of the array and ptr-- will point to previous element of the array.

int a[10]={25,85,13,47,78,92,63,31,52,76}, *p1=a, *p2=&a[9];

for (int k=0; k<10; k++, p1++)

cout<<*p1<<" ";

cout<<endl;

for (int x=0; x<10; x++, p2--)

cout<<*p2<<" ";

Running of the program segment produces following output:
25 85 13 47 78 92 63 31 52 76

76 52 31 63 92 78 47 13 85 25

 Relational operators == and != can be used with a pointer variable

int x1=30, x2=40, *p1=&x1, *p2=&x2;

if (p1==p2)

cout<<"Same Address "<<p1<<"=="<<p2<<endl;

else

cout<<"Different Addresses "<<p1<<"!="<<p2<<endl;

p1=p2; //Or p2=p1;

if (p1==p2)

cout<<"Same Address "<<p1<<"=="<<p2<<endl;

else

cout<<"Different Addresses "<<p1<<"!="<<p2<<endl;

Running of the program segment produces following output:
Different Addresses 0x0012ff88!=0x0012ff84

Same Address 0x0012ff84==0x0012ff84

C++ Notes Class XII Pointer and It’s Application

 Page 8 of 17

Pointer to character

Pointer to character (char*) is little different from pointer to any other data type. In C++ pointer to a

character is treated like a string. A string in C++ is terminated by a nul character. in C++ array of

character, pointer to character and string are used interchangeably. All the string based functions of

header file <string.h> uses char* as parameter instead of array of character. There are two major

differences between pointer to char and pointer to any other data type:

1. Displaying pointer to char will display a string starting from where the pointer is pointing to, till

pointer points to nul character

char x1='S', *cp=&x1;

int x2=20, *ip=&x2;

double x3=6.5, *dp=&x3;

cout<<"cp="<<cp<<endl;

cout<<"ip="<<ip<<endl;

cout<<"dp="<<dp<<endl;

cout<<"*cp="<<*cp<<endl;

cout<<"*ip="<<*ip<<endl;

cout<<"*dp="<<*dp<<endl;

Running of the program segment produces following output:
cp=S╕ ↕

ip=0x0012ff84

dp=0x0012ff7c

*cp=S

*ip=20

*dp=6.5

2. Inputting a value through a pointer to char is syntactically correct statement but it may flag a

warning and may lead to logical error and that may lead to run-time error

char* cp;

int* ip;

double* dp;

cin>>cp;

cin>>ip;

cin>>dp;

Pointer variable cp (pointer to char),

displays a string starting from 'S' (cp is

pointing to variable x1 and x1='S'.

Pointer variable cp does not display the

address of x1. Displaying pointer to any

other data type (not a char type) displays

the address stored in the pointer variable.

Statement cin>>cp; will flag a warning but it is syntactically

correct C++ statement. A string can be inputted through a pointer to

char because C++ treats pointer to a char as a string. Statements

cin>>ip; and cin>>dp; will flag syntax error since pointer to

other data type (not a char type) represents address.

Statement cout<<cp<<endl; displays S and

few garbage character because cout starts

displaying the string starting from S and then looks

for terminating nul character and cout encounters

nul character after few garbage characters.

C++ Notes Class XII Pointer and It’s Application

 Page 9 of 17

Pointer to structure (class) type

Just like pointer to fundamental data type (char / int / float / double) we can also have pointer to

derived type like pointer to structure (class) type. A structure (class) type has to be declared first then

pointer to that structure (class) type is to be created. One major difference between pointer to a

fundamental data type and pointer structure (class) type is the use of dereferencing (indirection)

operator. For a pointer to a fundamental type unary star operator (*) is used as dereferencing

(indirection) operator but generally for pointer to structure (class) type binary arrow operator (->) is

used as dereferencing (indirection) operator. An arrow operator consists of two characters:

dash/minus (-) followed by greater than sign (>). Examples are given below:

struct student

{

int roll;

char name[20];

double mark;

};

void main()

{

student s={23, "Sandip Kr Jain", 91.5};

student *p=&s; s

cout<<"p ="<<p<<endl;

cout<<"Roll="<<p->roll<<endl;

cout<<"Name="<<p->name<<endl;

cout<<"Mark="<<p->mark<<endl;

} p

Running of the program produces following output:
p =0x0012ff64

Roll=23

Name=Sandip Kr Jain

Mark=91.5

Consider the structure declaration of student and the pointer variable p created in the above

example, then following C++ statements will flag syntax error:

cin>>*p;

cout<<*p<<endl;

cout<<*p.roll<<*p.name<<*p.mark<<endl;

Pointer variable p points to stu, that is, *p is student (structure) type. Statements cin>>*p; and

cout<<*p; will flag syntax errors. Using star (*) as dereferencing operator with pointer to

structure (class) type, expressions *p.roll, *p.name and *p.mark will flag syntax errors

because dot (.) operator has higher precedence compared to star (*) operator. To remove the syntax

errors, parenthesis is needed around the expression *p. Corrected C++ statements are given below:

cout<<(*p).roll<<(*p).name<<(*p).mark<<endl;

cout<<p->roll<<p->name<<p->mark<<endl;

Expressions (*p).roll and p->roll are same. But expression (*p).roll is more

complicated compared to expression p->roll. Star (*) as a dereferencing operator can be used

with pointer to to any data type but arrow operator (->) can only be used with pointer to structure

(class) type. An example is give on the next page:

Pointer variable p is pointer to student (structure type) and it points

to s (structure variable). Statement cout<<"p="<<p<<endl

displays the address of s. Arrow as dereferencing operator is used

between pointer variable name (p) and structure member name (roll /

name / mark) to display the value stored in the variable stu.

23 "Sandip Kr Jain" 91.5

0012ff64

C++ Notes Class XII Pointer and It’s Application

 Page 10 of 17

#include<iostream.h>

class student

{

int roll;

char name[20];

double mark;

public:

student(int r, char* n, double m)

{

roll=r;

strcpy(name, n);

marks=m;

}

void display()

{

cout<<"Roll="<<roll<<endl;

cout<<"Name="<<name<<endl;

cout<<"Mark="<<mark<<endl;

}

};

void main()

{

student stu(23, "Sandip Kr Jain", 91.5), *p=&student;

cout<<"p ="<<p<<endl;

p->display();

}

Running of the program produces following output:
p =0x0012ff64

Roll=23

Name=Sandip Kr Jain

Mark=91.5

A pointer to a class type is exactly similar to pointer to structure type. While dereferencing with a

pointer to class type, only public members of the class can be dereferenced with the pointer

variable. Private members and protected members of the class cannot be dereferenced with a

pointer to a class type. Consider the class declaration of student and the pointer variable p created

in the above example, then following C++ statement will flag as syntax error:

cout<<p->roll<<p->name<<p->mark<<endl;

Compiler will flag syntax errors because roll, name and mark are private members of the class

student. There are two ways remove the syntax error:

 Change the visibility labels of data members roll, name and mark from private to public.

 Add three access functions to return the values stored in private data members roll, name and

mark. Pointer variable, dereferencing operator and access function can be used to access the

private data members roll, name and mark.

Array and Pointer

Array name is a constant pointer (address of first element of an array). Displaying an array name (except

for array of char) will display the starting address of the array. Displaying an array of char will

display the string stored in the array. An example is given below:

C++ Notes Class XII Pointer and It’s Application

 Page 11 of 17

#include<iostream.h>

void main()

{

int a[5]={10, 20, 30, 40, 50};

char b[6]="APRIL";

double c[5]={1.2, 2.3, 3.4, 4.5, 5.6};

cout<<"a="<<a<<" , "<<&a[0]<<endl;

cout<<"b="<<b<<" , "<<&b[0]<<endl;

cout<<"c="<<c<<" , "<<&c[0]<<endl;

}

Running of the program produces following output:
a=0x0012ff70 , 0x0012ff70

b=APRIL , APRIL

c=0x0012ff48 , 0x0012ff48

Since array is a pointer, array name can be assigned to a pointer variable. It is important to note that

array variable’s data type and pointer variable’s data must be same. An example is given below:
 ip a

#include<iostream.h>
void main()

{

int a[5]={10, 20, 30, 40, 50}, *ip=a;

char b[6]="APRIL", *cp=b;

double c[5]={1.2, 2.3, 3.4, 4.5, 5.6}, *dp=c;

cout<<"iarr="<<iarr<<" , ip="<<ip<<endl;

cout<<"carr="<<carr<<" , cp="<<cp<<endl;

cout<<"darr="<<darr<<" , dp="<<dp<<endl;

}

Running of the program produces following output:
a=0x0012ff70 , ip=0x0012ff70

b=APRIL , cp=APRIL

c=0x0012ff48, dp=0x0012ff48

If pointer variable’s data type and array variable’s data type do not match then the compiler will flag a

warning. An example is given below:

int a[5]={10, 20, 30, 40, 50};

double b[5]={1.2, 2.3, 3.4, 4.5, 5.6};

int* ip=b;

double* dp=a;

cout<<"ip="<<ip<<endl;

cout<<"dp="<<dp<<endl;

Statements int* ip=b; and double* dp=a; will flag warning because ip (pointer to int) stores

address b (array of double) and dp (pointer to double) stores address of a (array of int). A pointer

to void will be able to store address of any variable. A pointer to void is known as generic pointer or

type less pointer. An example is given below:

int a[5]={10, 20, 30, 40, 50};

char b[6]="APRIL";

double c[5]={1.2, 2.3, 3.4, 4.5, 5.6};

0012ff70 10

20

30

40

50

C++ Notes Class XII Pointer and It’s Application

 Page 12 of 17

void* p=a;

cout<<"Address of a="<<p<<endl;

p=b;

cout<<"Address of b="<<p<<endl;

p=c;

cout<<"Address of c="<<p<<endl;

Running of the program segment will produces following output:
Address of iarr=0x0012ff70

Address of carr=0x0012ff84

Address of darr=0x0012ff48

Pointer variable p is a pointer to void (generic pointer). Pointer variable p is used to display the

address of all the three arrays including array of char (b). It is also possible to display address of an

array of char by type casting the address to pointer to some other data type. One disadvantage of

generic pointer is that, generic pointer cannot be dereferenced. Trying to dereference a generic

pointer will flag a syntax error. An example is given below:

double x=20;

int a[5]={6,8,3,8,9};

void* p=&x;

cout<<*p<<endl;

p=a;

cout<<*p<<endl;

Dynamic Variable

To every variable – variables of fundamental type, array variables, structure variables, objects (variables

of the type class) and pointer variables, memory is allocated during the compilation time and memory

will be deallocated when a program comes to an end. Variables whose memory is allocated during

compilation time is called static variable. But there is a special type of variable whose memory is

allocated and deallocated during run-time (during program execution) is called dynamic variable.

Address of a dynamic variable is stored in a pointer variable. Operator new is used to allocate memory

dynamically. Operator delete is used to deallocate memory dynamically. It new and delete are unary

operator and keywords. Operators new and delete are also called memory management operator.

Rule: DataType* PtrVar = new DataType;

delete PtrVar;

DataType is either fundamental data type or derived data type and PtrVar is the name of

the pointer variable. Operator new allocates memory and address is stored in PtrVar.

Operator delete deallocates memory pointed to by PtrVar.

iptr *iptr

cptr *cptr

dptr *dptr

Pointer variables p is a generic pointer (pointer

to void). Pointer variable p first stores address

of x and next it stores address of a. When

compiling the program statement:
cout<<*p<<endl;

will flag syntax error.

009029e8

009029f8

00902a08

20

'F'

88.5

C++ Notes Class XII Pointer and It’s Application

 Page 13 of 17

#include<iostream.h>
void main()

{

double* dp=new double;

char* cp=new char;

int* ip=new int;

*ip=20; //cin>>*ip;

*cp='F'; //cin>>*cp;

*dp=8.5; //cin>>*dp;

cout<<"ip="<<ip<<" , *ip="<<*ip<<endl;

cout<<"cp="<<(void*)cp<<" , *cp="

 <<*cp<<endl;

cout<<"dp="<<dp<<" , *dp="<<*dp<<endl;

delete ip;

delete cp;

delete dp;

cout<<"*ip="<<*ip<<endl;

cout<<"*cp="<<*cp<<endl;

cout<<"*dp="<<*dp<<endl;

}

Running of the program produces following output:
ip=0x00902a08 , *ip=20

cp=0x009029f8 , *cp=F

dp=0x009029e8 , *dp=8.5

*ip=4241876

*cp=╘

*dp=1.86082e-307

In the previous example, memory was allocated dynamically and the address was stored in a pointer

variable. Value was stored in dynamic variable by using assignment operator. But value can be stored in

dynamic variable when the dynamic variable is being created. An example is given below:

double* dp=new double (8.5);

char* cp=new char ('F');

int* ip=new int (20);

cout<<"ip="<<ip<<" , *ip="<<*ip<<endl;

cout<<"cp="<<(void*)cp<<" , *cp="<<*cp<<endl;

cout<<"dp="<<dptr<<" , *dp="<<*dp<<endl;

delete ip;

delete cp;

delete dp;

Running of the program segment will produces following output:
ip=0x00902a08 , *ip=20

cp=0x009029f8 , *cp=F

dp=0x009029e8 , *dp=8.5

Value that is to be assigned to the newly created memory location is written within a pair of parenthesis.

Statement int* ip=new int (20); does three things:

 Creates a pointer variable ip

 Address of dynamic variable is stored in ip

 Dynamic variable (newly allocated memory location) is initialized with a value 20

Pointer variable ip points to *ip,

*ip is the dynamic variable

(memory is allocated to *ip during

run-time using operator new. Value

can be stored in *ip either by using

assignment operator (=) or taking

input from keyboard by using cin.

Pointer variable cp points to *cp,

*cp is the dynamic variable. Pointer

variable dp points to *dp, *dp is the

dynamic variable. To display address

stored in cp, cp is type casted to

void*. Operator delete ip

deallocates *ip, delete cp;

deallocates *cp and delete dp;

deallocates *dp. Displaying *ip,

*cp and *dp after deallocation,

shows garbage values.

C++ Notes Class XII Pointer and It’s Application

 Page 14 of 17

As mentioned earlier, operators new and delete can be used derived type (structure type / class type).

Examples are given showing usage of new and delete with pointer to structure type and pointer to

class type.

#include<iostream.h>
struct student

{

int roll;

char name[20];

double mark;

};

void display(student s)

{

cout<<"Roll="<<s.roll<<endl;

cout<<"Name="<<s.name<<endl;

cout<<"Mark="<<s.mark<<endl;

}

void main()

{

student *sp=new student;

sp->roll=23;

strcpy(sp->name, "Sandip Kr Jain");

sp->mark=88.5;

cout<<"sp ="<<sp<<endl;

display(*sp);

delete sp;

}

Running of the program produces following output:
sp =0x009029e8

Roll=23

Name=Sandip Kr Jain

Mark=88.5

#include<iostream.h>
class student

{

int roll;

char name[20];

double mark;

public:

void assign(int ro, char* na, double ma)

{

roll=ro;

strcpy(name, na);

marks=ma;

}

void display()

{

cout<<"Roll="<<roll<<endl<<"Name="<<name<<endl

 <<"Mark="<<mark<<endl;

}

};

C++ Notes Class XII Pointer and It’s Application

 Page 15 of 17

void main()

{

student *ptr=new student;

cout<<"ptr ="<<ptr<<endl;

ptr->assign(23, "Sandip Kr Jain", 91.5);

ptr->display();

delete ptr;

}

Running of the program produces following output:
ptr =009029e8

Roll=23

Name=Sandip Kr Jain

Mark=91.5

Dynamic Array

Any array in C++ is allocated memory during compilation time and that is reason why array size in C++

has to be a constant. Any attempt to create an array where array size is a variable, compiler flags syntax

error. But with dynamic memory allocation it is possible to create a dynamic array whose size can be

decided during run-time. Dynamic array is created during run-time by using the operator new and it is

deallocated during run-time by using the operator delete.

Rule: DataType* PtrVar = new DataType [Size];
delete []PtrVar;

DataType is the data type is either fundamental type or derived type and PtrVar is the

name of the pointer variable. Size represents size of the array. Size could be a positive

integer constant/variable/expression. Operator new allocates Size number of contiguous

memory locations and starting address of array is stored in PtrVar. Operator delete

deallocates contiguous memory block pointed to by PtrVar (dynamic array name).

Example 1:
#include<iostream.h>

#include<stdlib.h>

void main()

{

int n;

cout<<"Positive integer? "; cin>>n;

int* arr=new int[n];

for (int x=0; x<n; x++)

arr[x]=random(90)+10;

for (int k=1; k<n; k++)

for (int j=0; j<n-k; j++)

if (arr[j]>arr[j+1])

{

int t=arr[j];

arr[j]=arr[j+1];

arr[j+1]=t;

}

for (int c=0; c<n; c++)

cout<<arr[c]<<" ";

delete []arr;

}

C++ Notes Class XII Pointer and It’s Application

 Page 16 of 17

Running of the program produces following output:
Positive integer? 15

14 20 22 26 34 36 37 42 66 67 76 85 90 96 97

Example 2:
#include<iostream.h>

#include<stdlib.h>

void main()

{

int n;

cout<<"Positive integer? "; cin>>n;

double* arr=new double[n];

for (int x=0; x<n; x++)

arr[x]=(random(90)+10)/10.0;

for (int k=1; k<n; k++)

for (int j=0; j<n-k; j++)

if (arr[j]>arr[j+1])

{

double t=arr[j];

arr[j]=arr[j+1];

arr[j+1]=t;

}

for (int c=0; c<n; c++)

cout<<arr[c]<<" ";

delete []arr;

}

Running of the program produces following output:
Positive integer? 10

Displaying sorted array

2.2 2.4 4.1 5 6 6.3 7.3 8.6 8.9 9.2

Example 3:
#include<iostream.h>

void main()

{

char* arr=new char[20];

cout<<"Input a string ? "; cin>>arr;

cout<<"Inputted string= "<<arr<<endl;

delete []arr;

}

Running of the program produces following output:
Input a string ? Friday,Saturday

Inputted string= Friday,Saturday

Example 4:
#include<iostream.h>

struct student

{

char name[10];

double mark;

};

C++ Notes Class XII Pointer and It’s Application

 Page 17 of 17

void main()

{

cout<<"Positive integer? "; cin>>n;

student* a=new student [n];

for (int x=0; x<n; x++)

{

cout<<"Name? "; cin>>a[x].name;

cout<<"Mark? "; cin>>a[x].mark;

}

for (int k=1; k<n; k++)

for (int j=0; j<n-k; j++)

if (a[j].mark<a[j+1].mark)

{

student t=a[j];

a[j]=a[j+1];

a[j+1]=t;

}

for (int c=0; c<n; c++)

cout<<a[c].name<<" , "<<a[c].mark<<endl;

delete []a;

}

Running of the program produces following output:
Positive integer? 5

Name? Ankita

Mark? 90.5

Name? Biresh

Mark? 78.5

Name? Sooraj

Mark? 93.5

Name? Dahlia

Mark? 88.5

Name? Farida

Mark? 82.5

Displaying array sorted on Marks

Sooraj , 93.5

Ankita , 90.5

Dahlia , 88.5

Farida , 82.5

Biresh , 78.5

